Search results for "bracket"
showing 10 items of 99 documents
On the canonical structure of higher-derivative field theories. The gravitational WZW-model
1992
Abstract A general expression for the symplectic structure of a higher-derivative lagrangian field theory is given. General relativity and the gravitational WZW-model are considered in this framework. In the second case we work out explicitly the Poisson bracket for both chiral solutions giving rise, in two different ways, to the classical exchange algebra of the SL q (2) group.
The Principles of Canonical Mechanics
2010
Canonical mechanics is a central part of general mechanics, where one goes beyond the somewhat narrow framework of Newtonian mechanics with position coordinates in the three-dimensional space, towards a more general formulation of mechanical systems belonging to a much larger class. This is the first step of abstraction, leaving behind ballistics, satellite orbits, inclined planes, and pendulum-clocks; it leads to a new kind of description that turns out to be useful in areas of physics far beyond mechanics. Through d’Alembert’s principle we discover the concept of the Lagrangian function and the framework of Lagrangian mechanics that is built onto it. Lagrangian functions are particularly …
Spin texture motion in antiferromagnetic and ferromagnetic nanowires
2017
We propose a Hamiltonian dynamics formalism for the current and magnetic field driven dynamics of ferromagnetic and antiferromagnetic domain walls in one dimensional systems. To demonstrate the power of this formalism, we derive Hamilton equations of motion via Poisson brackets based on the Landau-Lifshitz-Gilbert phenomenology, and add dissipative dynamics via the evolution of the energy. We use this approach to study current induced domain wall motion and compute the drift velocity. For the antiferromagnetic case, we show that a nonzero magnetic moment is induced in the domain wall, which indicates that an additional application of a magnetic field would influence the antiferromagnetic do…
The damped harmonic oscillator in deformation quantization
2005
We propose a new approach to the quantization of the damped harmonic oscillator in the framework of deformation quantization. The quantization is performed in the Schr\"{o}dinger picture by a star-product induced by a modified "Poisson bracket". We determine the eigenstates in the damped regime and compute the transition probability between states of the undamped harmonic oscillator after the system was submitted to dissipation.
Algebraic and Differential Star Products on Regular Orbits of Compact Lie Groups
2000
In this paper we study a family of algebraic deformations of regular coadjoint orbits of compact semisimple Lie groups with the Kirillov Poisson bracket. The deformations are restrictions of deformations on the dual of the Lie algebra. We prove that there are non isomorphic deformations in the family. The star products are not differential, unlike the star products considered in other approaches. We make a comparison with the differential star product canonically defined by Kontsevich's map.
Topics on n-ary algebras
2011
We describe the basic properties of two n-ary algebras, the Generalized Lie Algebras (GLAs) and, particularly, the Filippov (or n-Lie) algebras (FAs), and comment on their n-ary Poisson counterparts, the Generalized Poisson (GP) and Nambu-Poisson (N-P) structures. We describe the Filippov algebra cohomology relevant for the central extensions and infinitesimal deformations of FAs. It is seen that semisimple FAs do not admit central extensions and, moreover, that they are rigid. This extends the familiar Whitehead's lemma to all $n\geq 2$ FAs, n=2 being the standard Lie algebra case. When the n-bracket of the FAs is no longer required to be fully skewsymmetric one is led to the n-Leibniz (or…
The Schouten - Nijenhuis bracket, cohomology and generalized Poisson structures
1996
Newly introduced generalized Poisson structures based on suitable skew-symmetric contravariant tensors of even order are discussed in terms of the Schouten-Nijenhuis bracket. The associated `Jacobi identities' are expressed as conditions on these tensors, the cohomological contents of which is given. In particular, we determine the linear generalized Poisson structures which can be constructed on the dual spaces of simple Lie algebras.
Quantum deformation of the Poincare supergroup and kappa -deformed superspace
1994
The classical $r$-matrix for $N=1$ superPoincar{\'e} algebra, given by Lukierski, Nowicki and Sobczyk is used to describe the graded Poisson structure on the $N=1$ Poincar{\'e} supergroup. The standard correspondence principle between the even (odd) Poisson brackets and (anti)commutators leads to the consistent quantum deformation of the superPoincar{\'e} group with the deformation parameter $q$ described by fundamental mass parameter $\kappa \quad (\kappa^{-1}=\ln{q})$. The $\kappa$-deformation of $N=1$ superspace as dual to the $\kappa$-deformed supersymmetry algebra is discussed.
Supersymmetry in non commutative superspaces
2003
Non commutative superspaces can be introduced as the Moyal-Weyl quantization of a Poisson bracket for classical superfields. Different deformations are studied corresponding to constant background fields in string theory. Supersymmetric and non supersymmetric deformations can be defined, depending on the differential operators used to define the Poisson bracket. Some examples of deformed, 4 dimensional lagrangians are given. For extended superspace (N>1), some new deformations can be defined, with no analogue in the N=1 case.
On the physical contents of q-deformed Minkowski spaces
1994
Some physical aspects of $q$-deformed spacetimes are discussed. It is pointed out that, under certain standard assumptions relating deformation and quantization, the classical limit (Poisson bracket description) of the dynamics is bound to contain unusual features. At the same time, it is argued that the formulation of an associated $q$-deformed field theory is fraught with serious difficulties.