6533b7d7fe1ef96bd126845e

RESEARCH PRODUCT

Topics on n-ary algebras

José M. IzquierdoJ. A. De Azcárraga

subject

High Energy Physics - TheoryHistoryPure mathematicsAnticommutativityAlgebraic structureInfinitesimalFOS: Physical sciencesEducationQuantitative Biology::Subcellular ProcessesMathematics::K-Theory and HomologySimple (abstract algebra)Mathematics - Quantum AlgebraLie algebraFOS: MathematicsQuantum Algebra (math.QA)Mathematical PhysicsMathematicsLemma (mathematics)Quantitative Biology::Molecular NetworksMathematics::Rings and AlgebrasMathematical Physics (math-ph)Mathematics - Rings and AlgebrasCohomologyComputer Science ApplicationsBracket (mathematics)High Energy Physics - Theory (hep-th)Rings and Algebras (math.RA)

description

We describe the basic properties of two n-ary algebras, the Generalized Lie Algebras (GLAs) and, particularly, the Filippov (or n-Lie) algebras (FAs), and comment on their n-ary Poisson counterparts, the Generalized Poisson (GP) and Nambu-Poisson (N-P) structures. We describe the Filippov algebra cohomology relevant for the central extensions and infinitesimal deformations of FAs. It is seen that semisimple FAs do not admit central extensions and, moreover, that they are rigid. This extends the familiar Whitehead's lemma to all $n\geq 2$ FAs, n=2 being the standard Lie algebra case. When the n-bracket of the FAs is no longer required to be fully skewsymmetric one is led to the n-Leibniz (or Loday's) algebra structure. Using that FAs are a particular case of n-Leibniz algebras, those with an anticommutative n-bracket, we study the class of n-Leibniz deformations of simple FAs that retain the skewsymmetry for the first n-1 entires of the n-Leibniz bracket.

https://doi.org/10.1088/1742-6596/284/1/012019