Search results for "brownian motion"

showing 10 items of 177 documents

Noise-induced resistive switching in a memristor based on ZrO2(Y)/Ta2O5 stack

2019

Resistive switching (RS) is studied in a memristor based on a ZrO2(Y)/Ta2O5 stack under a white Gaussian noise voltage signal. We have found that the memristor switches between the low resistance state and the high resistance state in a random telegraphic signal (RTS) mode. The effective potential profile of the memristor shows from two to three local minima and depends on the input noise parameters and the memristor operation. These observations indicate the multiplicative character of the noise on the dynamical behavior of the memristor, that is the noise perceived by the memristor depends on the state of the system and its electrical properties are influenced by the noise signal. The det…

Statistics and ProbabilityMaterials sciencebusiness.industryNoise inducedStatistical and Nonlinear PhysicsMemristorStochastic particle dynamicslaw.inventionDiffusionStack (abstract data type)lawResistive switchingOptoelectronicsFluctuation phenomenaStatistics Probability and UncertaintyBrownian motionbusiness
researchProduct

Hitting Time Distributions in Financial Markets

2006

We analyze the hitting time distributions of stock price returns in different time windows, characterized by different levels of noise present in the market. The study has been performed on two sets of data from US markets. The first one is composed by daily price of 1071 stocks trade for the 12-year period 1987-1998, the second one is composed by high frequency data for 100 stocks for the 4-year period 1995-1998. We compare the probability distribution obtained by our empirical analysis with those obtained from different models for stock market evolution. Specifically by focusing on the statistical properties of the hitting times to reach a barrier or a given threshold, we compare the prob…

Statistics and ProbabilityPhysics - Physics and SocietyAutoregressive conditional heteroskedasticityStock market modelFOS: Physical sciencesPhysics and Society (physics.soc-ph)Langevin-type equationHeston modelEconophysics; Stock market model; Langevin-type equation; Heston model; Complex SystemsFOS: Economics and businessEconometricsMathematicsGeometric Brownian motionStatistical Finance (q-fin.ST)Actuarial scienceEconophysicFinancial marketHitting timeQuantitative Finance - Statistical FinanceComplex SystemsProbability and statisticsCondensed Matter PhysicsSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)Heston modelPhysics - Data Analysis Statistics and ProbabilityProbability distributionStock marketData Analysis Statistics and Probability (physics.data-an)
researchProduct

Escape from a metastable state with fluctuating barrier

2003

Abstract We investigate the escape of a Brownian particle from fluctuating metastable states. We find the conditions for the noise enhanced stability (NES) effect for periodical driving force. We obtain general equations useful to calculate the average escape time for randomly switching potential profiles. For piece-wise linear potential profile we reveal the noise enhanced stability (NES) effect, when the height of “reverse” potential barrier of metastable state is comparatively small. We obtain analytically the condition for the NES phenomenon and the average escape time as a function of parameters, which characterize the potential and the driving dichotomous noise.

Statistics and ProbabilityPhysicsClassical mechanicsMetastabilityParticleRectangular potential barrierMechanicsFunction (mathematics)Condensed Matter PhysicsLinear potentialStability (probability)Brownian motionNoise (radio)Physica A: Statistical Mechanics and its Applications
researchProduct

Statistical mechanics characterization of spatio-compositional inhomogeneity

2009

On the basis of a model system of pillars built of unit cubes, a two-component entropic measure for the multiscale analysis of spatio-compositional inhomogeneity is proposed. It quantifies the statistical dissimilarity per cell of the actual configurational macrostate and the theoretical reference one that maximizes entropy. Two kinds of disorder compete: i) the spatial one connected with possible positions of pillars inside a cell (the first component of the measure), ii) the compositional one linked to compositions of each local sum of their integer heights into a number of pillars occupying the cell (the second component). As both the number of pillars and sum of their heights are conser…

Statistics and ProbabilityPhysicsFractional Brownian motionStatistical Mechanics (cond-mat.stat-mech)Entropy (statistical thermodynamics)PillarTime evolutionFOS: Physical sciencesModel systemStatistical mechanicsCondensed Matter PhysicsCombinatoricsUnit cubeStatistical physicsCondensed Matter - Statistical Mechanics
researchProduct

Tuning active Brownian motion with shot noise energy pulses

2009

The main aim of this work is to explore the possibility of modeling the biological energy support mediated by absorption of ATP (adenosine triphosphate) as an energetic shot noise. We develop a general model with discrete input of energy pulses and study shot-noise-driven ratchets. We consider these ratchets as prototypes of Brownian motors driven by energy-rich ATP molecules. Our model is a stochastic machine able to acquire energy from the environment and convert it into kinetic energy of motion. We present characteristic features and demonstrate the possibility of tuning these motors by adapting the mean frequency of the discrete energy inputs, which are described as a special shot noise…

Statistics and ProbabilityPhysicsPhysics::Biological PhysicsWork (thermodynamics)driven diffusive systems (theory) stochastic particle dynamics (theory) molecular motors (theory) molecular dynamics BRonian motion Fluctuation phenomenaShot noiseStatistical and Nonlinear PhysicsKinetic energyBrownian motorQuantitative Biology::Subcellular ProcessesClassical mechanicsMolecular motorStatistical physicsStatistics Probability and UncertaintyAbsorption (electromagnetic radiation)Energy (signal processing)Brownian motion
researchProduct

Frictional quantum decoherence

2007

The dynamics associated with a measurement-based master equation for quantum Brownian motion are investigated. A scheme for obtaining time evolution from general initial conditions is derived. This is applied to analyze dissipation and decoherence in the evolution of both a Gaussian and a Schr\"{o}dinger cat initial state. Dependence on the diffusive terms present in the master equation is discussed with reference to both the coordinate and momentum representations.

Statistics and ProbabilityPhysicsQuantum PhysicsQuantum decoherenceGaussianTime evolutionGeneral Physics and AstronomyFOS: Physical sciencesStatistical and Nonlinear PhysicsDissipationMomentumsymbols.namesakeClassical mechanicsModeling and SimulationMaster equationsymbolsQuantum Physics (quant-ph)QuantumMathematical PhysicsBrownian motion
researchProduct

Thermalization of Random Motion in Weakly Confining Potentials

2010

We show that in weakly confining conservative force fields, a subclass of diffusion-type (Smoluchowski) processes, admits a family of "heavy-tailed" non-Gaussian equilibrium probability density functions (pdfs), with none or a finite number of moments. These pdfs, in the standard Gibbs-Boltzmann form, can be also inferred directly from an extremum principle, set for Shannon entropy under a constraint that the mean value of the force potential has been a priori prescribed. That enforces the corresponding Lagrange multiplier to play the role of inverse temperature. Weak confining properties of the potentials are manifested in a thermodynamical peculiarity that thermal equilibria can be approa…

Statistics and ProbabilityPhysicsStatistical Mechanics (cond-mat.stat-mech)Probability (math.PR)FOS: Physical sciencesStatistical and Nonlinear PhysicsProbability density functionMathematical Physics (math-ph)Interval (mathematics)symbols.namesakeThermalisationPhysics - Data Analysis Statistics and ProbabilityLagrange multiplierBounded functionFOS: MathematicssymbolsFinite setConservative forceCondensed Matter - Statistical MechanicsMathematics - ProbabilityData Analysis Statistics and Probability (physics.data-an)Mathematical PhysicsBrownian motionMathematical physicsOpen Systems & Information Dynamics
researchProduct

Noise driven translocation of short polymers in crowded solutions

2008

In this work we study the noise induced effects on the dynamics of short polymers crossing a potential barrier, in the presence of a metastable state. An improved version of the Rouse model for a flexible polymer has been adopted to mimic the molecular dynamics by taking into account both the interactions between adjacent monomers and introducing a Lennard-Jones potential between all beads. A bending recoil torque has also been included in our model. The polymer dynamics is simulated in a two-dimensional domain by numerically solving the Langevin equations of motion with a Gaussian uncorrelated noise. We find a nonmonotonic behaviour of the mean first passage time and the most probable tran…

Statistics and ProbabilityPhysicschemistry.chemical_classificationQuantitative Biology::BiomoleculesStatistical Mechanics (cond-mat.stat-mech)Thermal fluctuationsEquations of motionFOS: Physical sciencesdynamics (theory) mechanical properties (DNA RNA membranes bio-polymers) (theory) Brownian MotionStatistical and Nonlinear PhysicsContext (language use)PolymerNoise (electronics)Condensed Matter::Soft Condensed MatterMolecular dynamicschemistryChemical physicsRectangular potential barrierStatistics Probability and UncertaintyFirst-hitting-time modelCondensed Matter - Statistical Mechanics
researchProduct

Nonstationary distributions and relaxation times in a stochastic model of memristor

2020

We propose a stochastic model for a memristive system by generalizing known approaches and experimental results. We validate our theoretical model by experiments carried out on a memristive device based on multilayer structure. In the framework of the proposed model we obtain the exact analytic expressions for stationary and nonstationary solutions. We analyze the equilibrium and non-equilibrium steady-state distributions of the internal state variable of the memristive system and study the influence of fluctuations on the resistive switching, including the relaxation time to the steady-state. The relaxation time shows a nonmonotonic dependence, with a minimum, on the intensity of the fluct…

Statistics and ProbabilityPhysicsdefectexact resultStochastic modellingdiffusionStatistical and Nonlinear PhysicsMemristorlaw.inventionExact resultslawRelaxation (physics)Statistical physicsBrownian motionexact resultsStatistics Probability and UncertaintyDiffusion (business)Brownian motionJournal of Statistical Mechanics: Theory and Experiment
researchProduct

Erratum to “Simulation of BSDEs with jumps by Wiener Chaos expansion” [Stochastic Process. Appl. 126 (2016) 2123–2162]

2017

Abstract We correct Proposition 2.9 from “Simulation of BSDEs with jumps by Wiener Chaos expansion” published in Stochastic Processes and their Applications, 126 (2016) 2123–2162. The proposition which provides an expression for the expectation of products of multiple integrals (w.r.t. Brownian motion and compensated Poisson process) requires a stronger integrability assumption on the kernels than previously stated. This does not affect the remaining results of the article.

Statistics and ProbabilityPolynomial chaosStochastic processApplied MathematicsMultiple integral010102 general mathematicsMathematical analysisMotion (geometry)Poisson processExpression (computer science)01 natural sciences010104 statistics & probabilitysymbols.namesakeMathematics::ProbabilityReflected Brownian motionModeling and SimulationsymbolsApplied mathematics0101 mathematicsMathematicsStochastic Processes and their Applications
researchProduct