Search results for "bundle"

showing 10 items of 257 documents

$$O_2(\mathbb {C})$$O2(C)-Vector Bundles and Equivariant Real Circle Actions

2020

The main goal of this article is to give an expository overview of some new results on real circle actions on affine four-space and their relation to previous results on \(O_2(\mathbb {C})\)-equivariant vector bundles. In Moser-Jauslin (Infinite families of inequivalent real circle actions on affine four-space, 2019, [13]), we described infinite families of equivariant real circle actions on affine four-space. In the present note, we will describe how these examples were constructed, and some consequences of these results.

Pure mathematics010102 general mathematics0103 physical sciencesAffine spaceVector bundleEquivariant map010307 mathematical physicsAffine transformation0101 mathematics01 natural sciencesMathematics
researchProduct

Ulrich bundles on K3 surfaces

2019

We show that any polarized K3 surface supports special Ulrich bundles of rank 2.

Pure mathematics14J60Algebra and Number TheoryMathematics::Commutative Algebra13C1414F05 13C14 14J60 16G60010102 general mathematics14F05acm bundlesACM vector sheaves and bundlesK3 surfaces01 natural sciencesUlrich sheavesMathematics - Algebraic GeometryMathematics::Algebraic Geometry0103 physical sciencesFOS: Mathematicssheaves010307 mathematical physics0101 mathematicsmoduli[MATH]Mathematics [math]Algebraic Geometry (math.AG)Mathematics
researchProduct

Flexible periodic points

2014

We define the notion of ${\it\varepsilon}$-flexible periodic point: it is a periodic point with stable index equal to two whose dynamics restricted to the stable direction admits ${\it\varepsilon}$-perturbations both to a homothety and a saddle having an eigenvalue equal to one. We show that an ${\it\varepsilon}$-perturbation to an ${\it\varepsilon}$-flexible point allows us to change it to a stable index one periodic point whose (one-dimensional) stable manifold is an arbitrarily chosen $C^{1}$-curve. We also show that the existence of flexible points is a general phenomenon among systems with a robustly non-hyperbolic two-dimensional center-stable bundle.

Pure mathematics37C29 37D30Applied MathematicsGeneral MathematicsBundlePhenomenonFOS: MathematicsDynamical Systems (math.DS)Mathematics - Dynamical SystemsMathematicsErgodic Theory and Dynamical Systems
researchProduct

On globally generated vector bundles on projective spaces II

2014

Extending a previous result of the authors, we classify globally generated vector bundles on projective spaces with first Chern class equal to three.

Pure mathematicsAlgebra and Number TheoryChern–Weil homomorphismChern classComplex projective spaceMathematical analysisVector bundleMathematics - Algebraic GeometryLine bundleFOS: MathematicsProjective spaceTodd classSettore MAT/03 - GeometriaAlgebraic Geometry (math.AG)Splitting principleMathematicsGlobally generated Vector bundles Projective Space
researchProduct

On the Oort conjecture for Shimura varieties of unitary and orthogonal types

2014

In this paper we study the Oort conjecture on Shimura subvarieties contained generically in the Torelli locus in the Siegel modular variety $\mathcal{A}_g$. Using the poly-stability of Higgs bundles on curves and the slope inequality of Xiao on fibred surfaces, we show that a Shimura curve $C$ is not contained generically in the Torelli locus if its canonical Higgs bundles contains a unitary Higgs subbundle of rank at least $(4g+2)/5$. From this we prove that a Shimura subvariety of $\mathbf{SU}(n,1)$-type is not contained generically in the Torelli locus when a numerical inequality holds, which involves the genus $g$, the dimension $n+1$, the degree $2d$ of CM field of the Hermitian space,…

Pure mathematicsAlgebra and Number TheoryConjectureSubvarietyMathematics::Number Theory010102 general mathematicsFibered knot01 natural sciencesMathematics - Algebraic GeometryMathematics::Algebraic Geometry11G15 14G35 14H400103 physical sciencesSubbundleFOS: Mathematics010307 mathematical physics0101 mathematicsTotally real number fieldLocus (mathematics)Variety (universal algebra)CM-fieldAlgebraic Geometry (math.AG)Mathematics
researchProduct

𝔸1-contractibility of affine modifications

2019

We introduce Koras–Russell fiber bundles over algebraically closed fields of characteristic zero. After a single suspension, this exhibits an infinite family of smooth affine [Formula: see text]-contractible [Formula: see text]-folds. Moreover, we give examples of stably [Formula: see text]-contractible smooth affine [Formula: see text]-folds containing a Brieskorn–Pham surface, and a family of smooth affine [Formula: see text]-folds with a higher-dimensional [Formula: see text]-contractible total space.

Pure mathematicsComputer Science::Information RetrievalGeneral Mathematics010102 general mathematicsAstrophysics::Instrumentation and Methods for AstrophysicsZero (complex analysis)Computer Science::Computation and Language (Computational Linguistics and Natural Language and Speech Processing)01 natural sciencesSuspension (topology)Motivic cohomology0103 physical sciencesComputer Science::General LiteratureFiber bundle010307 mathematical physicsAffine transformation0101 mathematicsAlgebraically closed fieldMathematicsInternational Journal of Mathematics
researchProduct

Local Gromov-Witten invariants are log invariants

2019

We prove a simple equivalence between the virtual count of rational curves in the total space of an anti-nef line bundle and the virtual count of rational curves maximally tangent to a smooth section of the dual line bundle. We conjecture a generalization to direct sums of line bundles.

Pure mathematicsConjectureGeneral Mathematics010102 general mathematicsTangent01 natural sciencesMathematics - Algebraic GeometryMathematics::Algebraic Geometry14N35 14D06 53D45Line bundle0103 physical sciencesFOS: Mathematics010307 mathematical physics0101 mathematicsEquivalence (formal languages)QAAlgebraic Geometry (math.AG)Mathematics::Symplectic GeometryMathematics
researchProduct

Projective Crystalline Representations of \'Etale Fundamental Groups and Twisted Periodic Higgs-de Rham Flow

2017

This paper contains three new results. {\bf 1}.We introduce new notions of projective crystalline representations and twisted periodic Higgs-de Rham flows. These new notions generalize crystalline representations of \'etale fundamental groups introduced in [7,10] and periodic Higgs-de Rham flows introduced in [19]. We establish an equivalence between the categories of projective crystalline representations and twisted periodic Higgs-de Rham flows via the category of twisted Fontaine-Faltings module which is also introduced in this paper. {\bf 2.}We study the base change of these objects over very ramified valuation rings and show that a stable periodic Higgs bundle gives rise to a geometric…

Pure mathematicsDegree (graph theory)Coprime integersMathematics - Number TheoryAbsolutely irreducibleApplied MathematicsGeneral MathematicsImage (category theory)Order (ring theory)Higgs bundleHiggs fieldMathematics - Algebraic Geometryp-adic Hodge theoryMathematics
researchProduct

Characterisation of upper gradients on the weighted Euclidean space and applications

2020

In the context of Euclidean spaces equipped with an arbitrary Radon measure, we prove the equivalence among several different notions of Sobolev space present in the literature and we characterise the minimal weak upper gradient of all Lipschitz functions.

Pure mathematicsEuclidean spaceApplied MathematicsMathematics::Analysis of PDEsContext (language use)Sobolev spaceLipschitz continuityFunctional Analysis (math.FA)46E35 53C23 26B05differentiaaligeometriaSobolev spaceMathematics - Functional AnalysisMathematics - Analysis of PDEsRadon measureEuclidean geometryFOS: MathematicsWeighted Euclidean spaceDecomposability bundlefunktionaalianalyysiEquivalence (measure theory)MathematicsAnalysis of PDEs (math.AP)
researchProduct

Discretization of harmonic measures for foliated bundles

2012

We prove in this note that there is, for some foliated bundles, a bijective correspondance between Garnett's harmonic measures and measures on the fiber that are stationary for some probability measure on the holonomy group. As a consequence, we show the uniqueness of the harmonic measure in the case of some foliations transverse to projective fiber bundles.

Pure mathematicsFiber (mathematics)HolonomyPhysics::OpticsHarmonic (mathematics)Dynamical Systems (math.DS)General MedicineHarmonic measureFOS: MathematicsBijectionFiber bundleMathematics::Differential GeometryUniquenessMathematics - Dynamical SystemsMathematics::Symplectic GeometryMathematicsProbability measureComptes Rendus Mathematique
researchProduct