Search results for "bundle"

showing 10 items of 257 documents

The first Chevalley–Eilenberg Cohomology group of the Lie algebra on the transverse bundle of a decreasing family of foliations

2010

Abstract In [L. Lebtahi, Lie algebra on the transverse bundle of a decreasing family of foliations, J. Geom. Phys. 60 (2010), 122–133], we defined the transverse bundle V k to a decreasing family of k foliations F i on a manifold M . We have shown that there exists a ( 1 , 1 ) tensor J of V k such that J k ≠ 0 , J k + 1 = 0 and we defined by L J ( V k ) the Lie Algebra of vector fields X on V k such that, for each vector field Y on V k , [ X , J Y ] = J [ X , Y ] . In this note, we study the first Chevalley–Eilenberg Cohomology Group, i.e. the quotient space of derivations of L J ( V k ) by the subspace of inner derivations, denoted by H 1 ( L J ( V k ) ) .

Pure mathematicsFoliacions (Matemàtica)Group (mathematics)General Physics and AstronomyLie Àlgebres deQuotient space (linear algebra)CohomologyAlgebraTensor (intrinsic definition)Lie bracket of vector fieldsLie algebraVector fieldFiber bundleGeometry and TopologyMathematical PhysicsMathematicsJournal of Geometry and Physics
researchProduct

Actions de IR et courbure de ricci du Fibré unitaire tangent des surfaces

1986

Characterisation of 2-dimensional Riemannian manifolds (M, g) (in particular, of surfaces with constant gaussian curvatureK=1/c2, o,−1/c2, respectively) whose tangent circle bundle (TcM, gs) (gs=Sasaki metric) admit an «almost-regular» vector field belonging to an eigenspace of the Ricci operator.

Pure mathematicsGeneral MathematicsCircle bundleGaussianMathematical analysisTangentsymbols.namesakeUnit tangent bundlesymbolsVector fieldMathematics::Differential GeometryExponential map (Riemannian geometry)Ricci curvatureEigenvalues and eigenvectorsMathematicsRendiconti del Circolo Matematico di Palermo
researchProduct

Expecting the unexpected: Quantifying the persistence of unexpected hypersurfaces

2021

If $X \subset \mathbb P^n$ is a reduced subscheme, we say that $X$ admits an unexpected hypersurface of degree $t$ for multiplicity $m$ if the imposition of having multiplicity $m$ at a general point $P$ fails to impose the expected number of conditions on the linear system of hypersurfaces of degree $t$ containing $X$. Conditions which either guarantee the occurrence of unexpected hypersurfaces, or which ensure that they cannot occur, are not well understand. We introduce new methods for studying unexpectedness, such as the use of generic initial ideals and partial elimination ideals to clarify when it can and when it cannot occur. We also exhibit algebraic and geometric properties of $X$ …

Pure mathematicsGeneral MathematicsComplete intersectionVector bundleAlgebraic geometrysymbols.namesakeMathematics - Algebraic GeometryAV-sequence; Complete intersection; Generic initial ideal; Hilbert function; Partial elimination ideal; Unexpected hypersurfaceUnexpected hypersurfaceFOS: MathematicsAlgebraic numberAV-sequenceAlgebraic Geometry (math.AG)Complete intersectionGeneric initial idealMathematicsHilbert series and Hilbert polynomialSequencePartial elimination idealSettore MAT/02 - AlgebraHypersurfaceHyperplanePrimary: 14C20 13D40 14Q10 14M10 Secondary: 14M05 14M07 13E10Hilbert functionsymbolsSettore MAT/03 - GeometriaAV-sequence Complete intersection Generic initial ideal Hilbert function Partial elimination ideal Unexpected hypersurface
researchProduct

On the Energy of Distributions, with Application to the Quaternionic Hopf Fibrations

2001

The energy of an oriented q-distribution ? in a compact oriented manifold M is defined to be the energy of the section of the Grassmannian manifold of oriented q-planes in M induced by ?. In the Grassmannian, the Sasaki metric is considered. We show here a condition for a distribution to be a critical point of the energy functional. In the spheres, we see that Hopf fibrations \(\) are critical points. Later, we prove the instability for these fibrations.

Pure mathematicsGeneral MathematicsMathematical analysisCritical point (mathematics)law.inventionSection (fiber bundle)Mathematics::Algebraic GeometrylawGrassmannianSPHERESMathematics::Differential GeometryMathematics::Symplectic GeometryManifold (fluid mechanics)Energy (signal processing)Distribution (differential geometry)Energy functionalMathematicsMonatshefte für Mathematik
researchProduct

An Introduction to Hodge Structures

2015

We begin by introducing the concept of a Hodge structure and give some of its basic properties, including the Hodge and Lefschetz decompositions. We then define the period map, which relates families of Kahler manifolds to the families of Hodge structures defined on their cohomology, and discuss its properties. This will lead us to the more general definition of a variation of Hodge structure and the Gauss-Manin connection. We then review the basics about mixed Hodge structures with a view towards degenerations of Hodge structures; including the canonical extension of a vector bundle with connection, Schmid’s limiting mixed Hodge structure and Steenbrink’s work in the geometric setting. Fin…

Pure mathematicsHodge theory010102 general mathematicsVector bundleComplex differential form01 natural sciencesPositive formHodge conjectureMathematics::Algebraic Geometryp-adic Hodge theory0103 physical sciences010307 mathematical physics0101 mathematicsHodge dualMathematics::Symplectic GeometryHodge structureMathematics
researchProduct

Foliations and Line Bundles

2014

In this chapter we start the global study of foliations on complex surfaces. The most basic global invariants which may be associated with such a foliation are its normal and tangent bundles, and here we shall prove several formulae and study several examples concerning the calculation of these bundles. We shall mainly follow the presentation given in [5]; the book [20] may also be of valuable help.

Pure mathematicsLine bundleLine (geometry)Foliation (geology)TangentMathematics::Symplectic GeometryMathematics
researchProduct

Numerical Kodaira Dimension

2014

In this chapter we study, following [30] , the first properties of the Zariski decomposition of the cotangent bundle of a nonrational foliation. In particular, we shall give a detailed description of the negative part of that Zariski decomposition, and we shall obtain a detailed classification of foliations whose Zariski decomposition is reduced to its negative part (i.e. foliations of numerical Kodaira dimension 0). We shall also discuss the “singular” point of view adopted in [30].

Pure mathematicsMathematics::Algebraic GeometryFoliation (geology)Decomposition (computer science)Cotangent bundleKodaira dimensionPoint (geometry)Mathematics::Symplectic GeometryMathematics
researchProduct

Theta-characteristics on singular curves

2007

On a smooth curve a theta–characteristic is a line bundle L with square that is the canonical line bundle ω. The equivalent conditionHom(L, ω) ∼= L generalizes well to singular curves, as applications show. More precisely, a theta–characteristic is a torsion–free sheaf F of rank 1 with Hom(F , ω) ∼= F . If the curve has non ADE–singularities then there are infinitely many theta–characteristics. Therefore, theta–characteristics are distinguished by their local type. The main purpose of this article is to compute the number of even and odd theta–characteristics (i.e. F with h(C,F) ≡ 0 resp. h(C,F) ≡ 1 modulo 2) in terms of the geometric genus of the curve and certain discrete invariants of a …

Pure mathematicsMathematics::Algebraic GeometryLine bundlePlane curveGeneral MathematicsGenus (mathematics)Geometric genusSheafRank (differential topology)Square (algebra)Canonical bundleMathematicsJournal of the London Mathematical Society
researchProduct

A note on the characteristic $p$ nonabelian Hodge theory in the geometric case

2012

We provide a construction of associating a de Rham subbundle to a Higgs subbundle in characteristic $p$ in the geometric case. As applications, we obtain a Higgs semistability result and a $W_2$-unliftable result.

Pure mathematicsMathematics::Dynamical SystemsGeneral MathematicsHodge theoryHigh Energy Physics::PhenomenologyAlgebraMathematics - Algebraic GeometryMathematics::Algebraic GeometrySubbundleFOS: MathematicsHiggs bosonMathematics::Differential Geometry14F30 14F40Algebraic Geometry (math.AG)Mathematics::Symplectic GeometryMathematics
researchProduct

Structure of the space of reducible connections for Yang-Mills theories

1990

Abstract The geometrical structure of the gauge equivalence classes of reducible connections are investigated. The general procedure to determine the set of orbit types (strata) generated by the action of the gauge group on the space of gauge potentials is given. In the so obtained classification, a stratum, containing generically certain reducible connections, corresponds to a class of isomorphic subbundles given by an orbit of the structure and gauge group. The structure of every stratum is completely clarified. A nonmain stratum can be understood in terms of the main stratum corresponding to a stratification at the level of a subbundle.

Pure mathematicsMathematics::Dynamical SystemsMathematical analysisStructure (category theory)General Physics and AstronomyYang–Mills existence and mass gapGauge (firearms)Space (mathematics)Mathematics::Algebraic GeometryGauge groupSubbundleGeometry and TopologyOrbit (control theory)Mathematics::Symplectic GeometryMathematical PhysicsGeneral Theoretical PhysicsMathematicsStratum
researchProduct