Search results for "bundle"
showing 10 items of 257 documents
The Rationality Criterion
2014
In this chapter we explain a remarkable theorem of Miyaoka [32] which asserts that a foliation whose cotangent bundle is not pseudoeffective is a foliation by rational curves. The original Miyaoka’s proof can be thought as a foliated version of Mori’s technique of construction of rational curves by deformations of morphisms in positive characteristic [33].
A construction of equivariant bundles on the space of symmetric forms
2021
We construct stable vector bundles on the space of symmetric forms of degree d in n+1 variables which are equivariant for the action of SL_{n+1}(C), and admit an equivariant free resolution of length 2. For n=1, we obtain new examples of stable vector bundles of rank d-1 on P^d, which are moreover equivariant for SL_2(C). The presentation matrix of these bundles attains Westwick's upper bound for the dimension of vector spaces of matrices of constant rank and fixed size.
Truncated modules and linear presentations of vector bundles
2018
We give a new method to construct linear spaces of matrices of constant rank, based on truncated graded cohomology modules of certain vector bundles as well as on the existence of graded Artinian modules with pure resolutions. Our method allows one to produce several new examples, and provides an alternative point of view on the existing ones.
Closed star products and cyclic cohomology
1992
We define the notion of a closed star product. A (generalized) star product (deformation of the associative product of functions on a symplectic manifold W) is closed iff integration over W is a trace on the deformed algebra. We show that for these products the cyclic cohomology replaces the Hochschild cohomology in usual star products. We then define the character of a closed star product as the cohomology class (in the cyclic bicomplex) of a well-defined cocycle, and show that, in the case of pseudodifferential operators (standard ordering on the cotangent bundle to a compact Riemannian manifold), the character is defined and given by the Todd class, while in general it fails to satisfy t…
Stabilization of the cohomology of thickenings
2016
For a local complete intersection subvariety $X=V({\mathcal I})$ in ${\mathbb P}^n$ over a field of characteristic zero, we show that, in cohomological degrees smaller than the codimension of the singular locus of $X$, the cohomology of vector bundles on the formal completion of ${\mathbb P}^n$ along $X$ can be effectively computed as the cohomology on any sufficiently high thickening $X_t=V({\mathcal I^t})$; the main ingredient here is a positivity result for the normal bundle of $X$. Furthermore, we show that the Kodaira vanishing theorem holds for all thickenings $X_t$ in the same range of cohomological degrees; this extends the known version of Kodaira vanishing on $X$, and the main new…
Big Vector Bundles on Surfaces and Fourfolds
2019
The aim of this note is to exhibit explicit sufficient criteria ensuring bigness of globally generated, rank-$r$ vector bundles, $r \geqslant 2$, on smooth, projective varieties of even dimension $d \leqslant 4$. We also discuss connections of our general criteria to some recent results of other authors, as well as applications to tangent bundles of Fano varieties, to suitable Lazarsfeld-Mukai bundles on four-folds, etcetera.
Motives of quadric bundles and relative intermediate jacobians of K3-Fano pairs
2015
This thesis consists of two parts. In the first part we study the Chow motive of a quadric bundle of odd relative dimension over a surface. We show that this motive admits a decomposition which involves the Prym motive of the double covering of the discriminant curve.In the second part, we consider Lagrangian fibrations, obtained as relative intermediate Jacobians of families of Fano threefolds containing a fixed K3 surface, and the existence of a symplectic compactification. In a particular case, we study a partial compactification using calculations with the software system Macaulay2.
L p-Spaces and the Radon–Nikodym Theorem
2020
In this chapter, we study the spaces of functions whose pth power is integrable. In Section 7.2, we first derive some of the important inequalities (Holder, Minkowski, Jensen) and then in Section 7.3 investigate the case p=2 in more detail.
Register Variation Across English Pharmaceutical Texts: A Corpus-driven Study of Keywords, Lexical Bundles and Phrase Frames in Patient Information L…
2013
Abstract This study constitutes an initial step towards filling a gap in corpus linguistics studies of linguistic and phraseological variation across English pharmaceutical texts, in particular in terms of recurrent linguistic patterns. The study conducted from a register- perspective ( Biber & Conrad, 2009 ), which employs both quantitative and qualitative research procedures, aims to provide a corpus-driven description of vocabulary and phraseology, namely key words, lexical bundles, and phrase frames, used in patient information leaflets and summaries of product characteristics (represented by 463 and 146 texts, respectively) written originally in English and collected in two domain-spec…
Semistable Higgs bundles, periodic Higgs bundles and representations of algebraic fundamental groups
2019
Let $k $ be the algebraic closure of a finite field of odd characteristic $p$ and $X$ a smooth projective scheme over the Witt ring $W(k)$ which is geometrically connected in characteristic zero. We introduce the notion of Higgs-de Rham flow and prove that the category of periodic Higgs-de Rham flows over $X/W(k)$ is equivalent to the category of Fontaine modules, hence further equivalent to the category of crystalline representations of the \'{e}tale fundamental group $\pi_1(X_K)$ of the generic fiber of $X$, after Fontaine-Laffaille and Faltings. Moreover, we prove that every semistable Higgs bundle over the special fiber $X_k$ of $X$ of rank $\leq p$ initiates a semistable Higgs-de Rham …