Search results for "c-FLIP"

showing 4 items of 4 documents

Chemotherapy overcomes TRAIL-R4-mediated TRAIL resistance at the DISC level

2011

International audience; TNF-related apoptosis-inducing ligand or Apo2L (Apo2L/TRAIL) is a promising anti-cancer drug owing to its ability to trigger apoptosis by binding to TRAIL-R1 or TRAIL-R2, two membrane-bound receptors that are often expressed by tumor cells. TRAIL can also bind non-functional receptors such as TRAIL-R4, but controversies still exist regarding their potential to inhibit TRAIL-induced apoptosis. We show here that TRAIL-R4, expressed either endogenously or ectopically, inhibits TRAIL-induced apoptosis. Interestingly, the combination of chemotherapeutic drugs with TRAIL restores tumor cell sensitivity to apoptosis in TRAIL-R4-expressing cells. This sensitization, which ma…

MESH: CASP8 and FADD-Like Apoptosis Regulating ProteinMESH : Antineoplastic Combined Chemotherapy ProtocolsCASP8 and FADD-Like Apoptosis Regulating ProteinTRAILApoptosisMESH : Models BiologicalMitochondrionMESH : RNA Small InterferingMESH: Caspase 8TNF-Related Apoptosis-Inducing LigandMESH : TNF-Related Apoptosis-Inducing LigandMESH : Tumor Necrosis Factor Decoy Receptors0302 clinical medicineRNA interferenceNeoplasmsAntineoplastic Combined Chemotherapy ProtocolsMESH: RNA Small InterferingMESH: NeoplasmsRNA Small InterferingReceptorSensitizationCaspase 80303 health sciencesMESH : Caspase 8MESH: Drug Resistance Neoplasm3. Good healthCell biologyMESH: Antineoplastic Combined Chemotherapy ProtocolsMESH : Drug Resistance Neoplasmmedicine.anatomical_structure030220 oncology & carcinogenesisRNA InterferenceMESH : GPI-Linked ProteinsMESH: TNF-Related Apoptosis-Inducing LigandDeath Domain Receptor Signaling Adaptor ProteinsProgrammed cell deathMESH: Cell Line Tumorc-FLIPMESH: RNA InterferenceBiologyGPI-Linked ProteinsCaspase 8Models Biological03 medical and health sciencesCell Line TumorReceptors Tumor Necrosis Factor Member 10cmedicineTRAIL-R4HumanscancerChemotherapy[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular BiologyMESH: Receptors TNF-Related Apoptosis-Inducing LigandMESH : Receptors TNF-Related Apoptosis-Inducing Ligand[ SDV.BBM ] Life Sciences [q-bio]/Biochemistry Molecular BiologyMolecular Biology030304 developmental biologyOriginal PaperMESH: HumansMESH : Cell Line TumorMESH: ApoptosisMESH : HumansMESH: Models BiologicalMESH : CASP8 and FADD-Like Apoptosis Regulating ProteinCell BiologyMESH: Tumor Necrosis Factor Decoy ReceptorsMESH : NeoplasmsReceptors TNF-Related Apoptosis-Inducing LigandTumor Necrosis Factor Decoy ReceptorsDrug Resistance NeoplasmApoptosisMESH : RNA InterferenceMESH: GPI-Linked ProteinsMESH : ApoptosisMESH : Death Domain Receptor Signaling Adaptor ProteinsMESH: Death Domain Receptor Signaling Adaptor ProteinsTumor Necrosis Factor Decoy Receptors
researchProduct

Indicaxanthin from Opuntia Ficus Indica (L. Mill) impairs melanoma cell proliferation, invasiveness, and tumor progression.

2018

Abstract Background: A strong, reciprocal crosstalk between inflammation and melanoma has rigorously been demonstrated in recent years, showing how crucial is a pro-inflammatory microenvironment to drive therapy resistance and metastasis. Purpose: We investigated on the effects of Indicaxanthin, a novel, anti-inflammatory and bioavailable phytochemical from Opuntia Ficus Indica fruits, against human melanoma both in vitro and in vivo. Study Design and Methods: The effects of indicaxanthin were evaluated against the proliferation of A375 human melanoma cell line and in a mice model of cutaneous melanoma. Cell proliferation was assessed by MTT assay, apoptosis by Annexin V-Fluorescein Isothio…

0301 basic medicine3003MaleSkin NeoplasmsPyridinesPyridinePhytochemicalsMelanoma ExperimentalPharmaceutical ScienceIndicaxanthinApoptosisBcl-2 B cell lymphoma gene-2 (Bcl-2)chemistry.chemical_compoundMice0302 clinical medicineOpuntia Ficus Indica (L.Mill)Settore BIO/10 - BiochimicaDrug DiscoveryCXCL1 chemokine (C-X-C motif) ligand 1MelanomaNF-κB nuclear factor kappa BMTT 3-[45-dimethyltiazol-2-yl]-25-diphenyl tetrazolium bromideMelanomaNF-kappa BOpuntiaComplementary and Alternative Medicine2708 DermatologyBetaxanthinsCXCL1030220 oncology & carcinogenesisMolecular MedicinePhC phytochemicalGrowth inhibitionIndicaxanthinHumanBiologyPhytochemicalNHEM normal human epidermal melanocyte03 medical and health sciencesc-FLIP FLICE-inhibitory proteinIn vivoCell Line TumormedicineAnimalsHumansNeoplasm InvasivenessSkin NeoplasmCell ProliferationNeoplasm InvasiveneInflammationPharmacologyCell growthAnimalDrug Discovery3003 Pharmaceutical ScienceApoptosimedicine.diseaseMice Inbred C57BL030104 developmental biologyComplementary and alternative medicinechemistryTumor progressionList of Abbrevations: AxV-FITC annexin V-fluorescein isothiocyanateBetaxanthinFruitCutaneous melanomaCancer researchPI propidium iodide PIPhytomedicine : international journal of phytotherapy and phytopharmacology
researchProduct

Autocrine production of interleukin-4 and interleukin-10 is required for survival and growth of thyroid cancer cells.

2006

AbstractAlthough CD95 and its ligand are expressed in thyroid cancer, the tumor cell mass does not seem to be affected by such expression. We have recently shown that thyroid carcinomas produce interleukin (IL)-4 and IL-10, which promote resistance to chemotherapy through the up-regulation of Bcl-xL. Here, we show that freshly purified thyroid cancer cells were completely refractory to CD95-induced apoptosis despite the consistent expression of Fas-associated death domain and caspase-8. The analysis of potential molecules able to prevent caspase-8 activation in thyroid cancer cells revealed a remarkable up-regulation of cellular FLIPL (cFLIPL) and PED/PEA-15, two antiapoptotic proteins whos…

Cancer Researchmedicine.medical_treatmentNF-KAPPA-BOligonucleotidesC-FLIPCASP8 and FADD-Like Apoptosis Regulating ProteinApoptosisSuppressor of Cytokine Signaling ProteinsSIGNALING COMPLEXThyroid cancerTumorCARCINOMA CELLSANDROGEN RECEPTORIntracellular Signaling Peptides and ProteinsInterleukinHASHIMOTOS-THYROIDITISMiddle AgedProtein-Tyrosine KinasesInterleukin-10Up-RegulationMALIGNANT GLIOMA-CELLSInterleukin 10CytokineOncologyAged; Antibodies; Apoptosis; CASP8 and FADD-Like Apoptosis Regulating Protein; Cell Growth Processes; Cell Line Tumor; Humans; Interleukin-10; Interleukin-4; Intracellular Signaling Peptides and Proteins; Janus Kinase 1; Middle Aged; Oligonucleotides Antisense; Phosphoproteins; Protein-Tyrosine Kinases; Repressor Proteins; STAT6 Transcription Factor; Suppressor of Cytokine Signaling 1 Protein; Suppressor of Cytokine Signaling Proteins; Thyroid Neoplasms; Up-Regulation; fas Receptor; Oncology; Cancer Researchmedicine.medical_specialtyANTIAPOPTOTIC PROTEINSCell Growth ProcessesAntibodiesCell LineThyroid carcinomaSuppressor of Cytokine Signaling 1 ProteinSettore MED/04 - PATOLOGIA GENERALEInternal medicineCell Line TumormedicineHumansThyroid Neoplasmsfas ReceptorAntisenseAutocrine signallingInterleukin 4AgedAPOPTOSIS-INDUCING LIGANDbusiness.industryJanus Kinase 1Oligonucleotides Antisensemedicine.diseasePhosphoproteinsRepressor ProteinsEndocrinologyCancer cellCancer researchInterleukin-4businessApoptosis Regulatory ProteinsSTAT6 Transcription FactorCancer research
researchProduct

Regulating TRAIL Receptor-Induced Cell Death at the Membrane: A Deadly Discussion

2011

Article Open access plus; International audience; The use of TRAIL/APO2L and monoclonal antibodies targeting TRAIL receptors for cancer therapy holds great promise, due to their ability to restore cancer cell sensitivity to apoptosis in association with conventional chemotherapeutic drugs in a large variety of tumors. TRAIL-induced cell death is tightly regulated right from the membrane and at the DISC (Death-Inducing Signaling Complex) level. The following patent and literature review aims to present and highlight recent findings of the deadly discussion that determines tumor cell fate upon TRAIL engagement.

MESH: Cell DeathMESH: Signal TransductionCancer ResearchApoptosisTRAILMESH : Models BiologicalscaffoldCell membrane0302 clinical medicineDrug DiscoveryMESH: AnimalsPharmacology (medical)Receptordeath effector domain0303 health sciencesCell DeathGeneral MedicineTRAIL-R4.3. Good healthCell biologymedicine.anatomical_structureOncology030220 oncology & carcinogenesisSignal transductionMESH : Apoptosis Regulatory ProteinsSignal TransductionProgrammed cell deathc-FLIPdeath domainmedicine.drug_classMESH : Cell MembraneCancer therapyBiologyMonoclonal antibodyModels BiologicalArticle03 medical and health sciencesmedicineAnimalsHumansChemotherapy[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular BiologyMESH: Receptors TNF-Related Apoptosis-Inducing LigandMESH : Receptors TNF-Related Apoptosis-Inducing Ligand[ SDV.BBM ] Life Sciences [q-bio]/Biochemistry Molecular Biology030304 developmental biologyMESH : Signal TransductionMESH: HumansMESH: Apoptosis Regulatory ProteinsMESH: ApoptosisMESH : HumansCell MembraneMESH: Models BiologicalDISCReceptors TNF-Related Apoptosis-Inducing LigandApoptosisMESH : Cell DeathFADDCancer cellMESH : AnimalsApoptosis Regulatory ProteinsMESH : ApoptosisMESH: Cell MembraneRecent Patents on Anti-Cancer Drug Discovery
researchProduct