Search results for "c-MET"

showing 10 items of 47 documents

2,3-Dihydrobenzofuran privileged structures as new bioinspired lead compounds for the design of mPGES-1 inhibitors

2016

International audience; 2,3-Dihydrobenzofurans are proposed as privileged structures and used as chemical platform to design small compound libraries. By combining molecular docking calculations and experimental verification of biochemical interference, we selected some potential inhibitors of microsomal prostaglandin E2 synthase (mPGES)-1. Starting from low affinity natural product 1, by our combined approach we identified the compounds 19 and 20 with biological activity in the low micromolar range. Our data suggest that the 2,3-dihydrobenzofuran derivatives might be suitable bioinspired lead compounds for development of new generation mPGES-1 inhibitors with increased affinity.

0301 basic medicine300323-Dihydrobenzofuran privileged structure; Cancer; Inflammation; Molecular docking; mPGES-1 inhibitors; Biochemistry; Clinical Biochemistry; Molecular Biology; Molecular Medicine; Organic Chemistry; Drug Discovery3003 Pharmaceutical Science; 3003Amino Acid MotifsClinical BiochemistryGene ExpressionPharmaceutical Science01 natural sciencesClinical biochemistryBiochemistry[ CHIM ] Chemical SciencesProtein Structure Secondary[ SDV.CAN ] Life Sciences [q-bio]/Cancerchemistry.chemical_compoundLow affinityDrug DiscoveryEnzyme Inhibitors23-Dihydrobenzofuran privileged structure; Molecular docking; mPGES-1 inhibitors; Cancer; InflammationProstaglandin-E SynthasesCancerAnti-Inflammatory Agents Non-SteroidalBiological activityProto-Oncogene Proteins c-metIntramolecular OxidoreductasesMolecular Docking SimulationMolecular dockingMolecular Medicinelipids (amino acids peptides and proteins)Cell SurvivalStereochemistryMolecular Sequence Data2Antineoplastic Agents[SDV.CAN]Life Sciences [q-bio]/Cancer3-Dihydrobenzofuran privileged structureInhibitory Concentration 50Structure-Activity Relationship03 medical and health sciencesCell Line TumorMicrosomesHumans[CHIM]Chemical SciencesMolecular BiologyBenzofuransInflammationNatural product010405 organic chemistryDrug Discovery3003 Pharmaceutical ScienceOrganic ChemistryEpithelial CellsmPGES-1 inhibitorsCombinatorial chemistryCombined approach0104 chemical sciences030104 developmental biologychemistryDrug DesignDrug Screening Assays Antitumor
researchProduct

A receptor-antibody hybrid hampering MET-driven metastatic spread

2021

AbstractBackgroundThe receptor encoded by the MET oncogene and its ligand Hepatocyte Growth Factor (HGF) are at the core of the invasive-metastatic behavior. In a number of instances genetic alterations result in ligand-independent onset of malignancy (METaddiction). More frequently, ligand stimulation of wild-type MET contributes to progression toward metastasis (METexpedience). Thus, while MET inhibitors alone are effective in the first case, combination therapy with ligand inhibitors is required in the second condition.MethodsIn this paper, we generated hybrid molecules gathering HGF and MET inhibitory properties. This has been achieved by ‘head-to-tail’ or ‘tail-to-head’ fusion of a sin…

0301 basic medicineCancer ResearchImmunoconjugatesmedicine.medical_treatmentMice SCIDEpitopeFusion proteins; HGF; MET; Metastasis; Targeted therapy; A549 Cells; Animals; Binding Sites Antibody; Cell Line Tumor; Cell Proliferation; Female; Hepatocyte Growth Factor; Humans; Immunoconjugates; Immunoglobulin Fab Fragments; Mice; Mice SCID; Neoplasm Metastasis; Neoplasms; Proto-Oncogene Proteins c-met; Rats; Rats Sprague-Dawley; Recombinant Proteins; Xenograft Model Antitumor AssaysMetastasisTargeted therapyMetastasisRats Sprague-DawleyTargeted therapyMice0302 clinical medicineNeoplasmsHGFNeoplasm MetastasisReceptorTumorHepatocyte Growth FactorChemistryProto-Oncogene Proteins c-metlcsh:Neoplasms. Tumors. Oncology. Including cancer and carcinogensRecombinant ProteinsOncology030220 oncology & carcinogenesisMETFemaleHepatocyte growth factormedicine.drugSCIDlcsh:RC254-282Cell LineImmunoglobulin Fab Fragments03 medical and health sciencesCell Line TumorPancreatic cancermedicineAnimalsHumansAntibodyCell ProliferationBinding SitesResearchmedicine.diseaseXenograft Model Antitumor AssaysFusion proteinRatsFusion proteins030104 developmental biologyA549 CellsCancer cellCancer researchBinding Sites AntibodySprague-DawleyJournal of Experimental & Clinical Cancer Research
researchProduct

Targeting the MET oncogene by concomitant inhibition of receptor and ligand via an antibody-"decoy" strategy

2018

MET, a master gene sustaining "invasive growth," is a relevant target for cancer precision therapy. In the vast majority of tumors, wild-type MET behaves as a "stress-response" gene and relies on the ligand (HGF) to sustain cell "scattering," invasive growth and apoptosis protection (oncogene "expedience"). In this context, concomitant targeting of MET and HGF could be crucial to reach effective inhibition. To test this hypothesis, we combined an anti-MET antibody (MvDN30) inducing "shedding" (i.e., removal of MET from the cell surface), with a "decoy" (i.e., the soluble extracellular domain of the MET receptor) endowed with HGF-sequestering ability. To avoid antibody/decoy interaction-and …

0301 basic medicineCancer ResearchLung NeoplasmsCellContext (language use)ApoptosisMice SCIDLigands03 medical and health sciencesMice0302 clinical medicineMice Inbred NODanti-HGF therapy; antibodies; decoy; MET oncogene; MET target therapyMET oncogeneExtracellularmedicineTumor Cells CulturedantibodiesAnimalsHumansdecoyCell ProliferationOncogenebiologyMET target therapyChemistryAntibodies MonoclonalProto-Oncogene Proteins c-metXenograft Model Antitumor AssaysIn vitro030104 developmental biologymedicine.anatomical_structureOncology030220 oncology & carcinogenesisCancer cellColonic NeoplasmsCancer researchbiology.proteinanti-HGF therapyFemaleAntibodyDecoyGlioblastoma
researchProduct

Dual Constant Domain-Fab: A novel strategy to improve half-life and potency of a Met therapeutic antibody

2016

The kinase receptor encoded by the Met oncogene is a sensible target for cancer therapy. The chimeric monovalent Fab fragment of the DN30 monoclonal antibody (MvDN30) has an odd mechanism of action, based on cell surface removal of Met via activation of specific plasma membrane proteases. However, the short half-life of the Fab, due to its low molecular weight, is a severe limitation for the deployment in therapy. This issue was addressed by increasing the Fab molecular weight above the glomerular filtration threshold through the duplication of the constant domains, in tandem (DCD-1) or reciprocally swapped (DCD-2). The two newly engineered molecules showed biochemical properties comparable…

0301 basic medicineCancer ResearchMice SCIDCancer targeted therapy0302 clinical medicineMice Inbred NODEpidermal growth factor receptorPhosphorylationbiologyChemistryImmunoglobulin Fab FragmentsAntibodies MonoclonalGeneral MedicineArticlesProto-Oncogene Proteins c-metHalf-lifeCell biologyOncology030220 oncology & carcinogenesisColonic NeoplasmsMetMolecular MedicineFemalemedicine.symptomSignal transductionAntibodySignal Transductionmedicine.drug_classColonAntibody; Cancer targeted therapy; Fab; Half-life; Met; Protein engineering; Cancer Research; Genetics; Molecular MedicineAntineoplastic AgentsMonoclonal antibody03 medical and health sciencesImmunoglobulin Fab FragmentsProtein DomainsCell Line TumormedicineGeneticsAnimalsHumansFabAntibodyCell growthMolecular biology030104 developmental biologyHEK293 CellsMechanism of actionHepatocyte Growth Factor ReceptorA549 Cellsbiology.proteinProtein engineering
researchProduct

MET-EGFR dimerization in lung adenocarcinoma is dependent on EGFR mtations and altered by MET kinase inhibition

2017

Advanced lung cancer has poor survival with few therapies. EGFR tyrosine kinase inhibitors (TKIs) have high response rates in patients with activating EGFR mutations, but acquired resistance is inevitable. Acquisition of the EGFR T790M mutation causes over 50% of resistance; MET amplification is also common. Preclinical data suggest synergy between MET and EGFR inhibitors. We hypothesized that EGFR-MET dimerization determines response to MET inhibition, depending on EGFR mutation status, independently of MET copy number. We tested this hypothesis by generating isogenic cell lines from NCI-H1975 cells, which co-express L858R and T790M EGFR mutations, namely H1975L858R/T790M (EGFR TKI resista…

0301 basic medicineLung NeoplasmsKinase InhibitorsCancer Treatmentlcsh:MedicinePhysical ChemistryBiochemistryFluorophotometryT790MSpectrum Analysis Techniques0302 clinical medicineFluorescence Resonance Energy TransferMedicine and Health SciencesPhosphorylationEnzyme Inhibitorslcsh:ScienceExtracellular Signal-Regulated MAP KinasesEGFR inhibitorsStainingMice Inbred BALB CMultidisciplinaryFluorescent in Situ HybridizationPhysicsCell StainingProto-Oncogene Proteins c-metPrecipitation TechniquesErbB ReceptorsChemistryOncologySpectrophotometry030220 oncology & carcinogenesisPhysical SciencesErlotinibDimerizationProtein BindingResearch Articlemedicine.drugChemical physicsMice NudeMolecular Probe TechniquesAdenocarcinoma of LungAdenocarcinomaBiologyResearch and Analysis Methods03 medical and health sciencesGefitinibGrowth factor receptorCell Line TumormedicineAnimalsHumansImmunoprecipitationMolecular Biology TechniquesLung cancerProtein Kinase InhibitorsMolecular BiologyCell ProliferationCell growthlcsh:RReproducibility of ResultsBiology and Life SciencesDimers (Chemical physics)medicine.diseaseMolecular biologyIsogenic human disease modelsProbe Hybridizationrespiratory tract diseasesHEK293 Cells030104 developmental biologyChemical PropertiesSpecimen Preparation and TreatmentFocal Adhesion Protein-Tyrosine KinasesMutationEnzymologylcsh:QProtein MultimerizationProto-Oncogene Proteins c-aktCytogenetic TechniquesPLOS ONE
researchProduct

Recombinant human hepatocyte growth factor provides protective effects in cerulein-induced acute pancreatitis in mice.

2018

Acute pancreatitis is a multifactorial disease associated with profound changes of the pancreas induced by release of digestive enzymes that lead to increase in proinflammatory cytokine production, excessive tissue necrosis, edema, and bleeding. Elevated levels of hepatocyte growth factor (HGF) and its receptor c-Met have been observed in different chronic and acute pancreatic diseases including experimental models of acute pancreatitis. In the present study, we investigated the protective effects induced by the recombinant human HGF in a mouse model of cerulein-induced acute pancreatitis. Pancreatitis was induced by 8 hourly administrations of supramaximal cerulein injections (50 µg/kg, ip…

0301 basic medicineMalemedicine.medical_specialtyNecrosisPhysiologyClinical BiochemistryInflammationApoptosismedicine.disease_causeProtective AgentsAntioxidantsProinflammatory cytokine03 medical and health sciencesMiceInternal medicineEdemamedicineAnimalsHumansbusiness.industryHepatocyte Growth FactorCell BiologyProto-Oncogene Proteins c-metmedicine.diseaseGlutathioneSurvival AnalysisRecombinant ProteinsDisease Models AnimalOxidative Stress030104 developmental biologyEndocrinologyPancreatitisAcute pancreatitisPancreatitisHepatocyte growth factormedicine.symptombusinessOxidative stressCeruletidemedicine.drugSignal TransductionJournal of cellular physiology
researchProduct

c-met is overexpressed in type I ovarian cancer: Results of an investigative analysis in a cohort of consecutive ovarian cancer patients

2016

The tyrosine kinase c-met alters signaling cascades such as the BRAF-MAPK and PI3K-PKB pathways. These alterations are involved in the carcinogenesis of type I but not type II ovarian cancer (OC). Therefore, the present study investigated the patterns of c-met expression in a cohort of consecutive patients with OC. c-met expression was determined by immunohistochemical analysis. Differences in c-met overexpression among subgroups of established clinicopathological features, including age, histological subtype, tumor stage, histological grading, post-operative tumor burden and completeness of chemotherapy, were determined by χ2 test. Cox regression analyses were performed to determine the pr…

0301 basic medicineOncologyCancer ResearchPathologymedicine.medical_specialtyC-Metmedicine.medical_treatmentBiologymedicine.disease_cause03 medical and health scienceschemistry.chemical_compound0302 clinical medicineInternal medicinemedicineChemotherapyOncogeneProportional hazards modelArticlesmedicine.diseaseMolecular medicine030104 developmental biologyOncologychemistry030220 oncology & carcinogenesisCohortCarcinogenesisOvarian cancerOncology Letters
researchProduct

Detection of MET Alterations Using Cell Free DNA and Circulating Tumor Cells from Cancer Patients

2020

MET alterations may provide a potential biomarker to evaluate patients who will benefit from treatment with MET inhibitors. Therefore, the purpose of the present study is to investigate the utility of a liquid biopsy-based strategy to assess MET alterations in cancer patients. We analyzed MET amplification in circulating free DNA (cfDNA) from 174 patients with cancer and 49 healthy controls and demonstrated the accuracy of the analysis to detect its alteration in patients. Importantly, a significant correlation between cfDNA concentration and MET copy number (CN) in cancer patients (r = 0.57, p &lt

0301 basic medicineOncologyMale<i>MET</i> copy numbermedicine.medical_treatmentproteínas protooncogénicas c-metdosificación génicahumanosresistencia a medicamentosDrug ResistanceGene Dosagecirculating free DNA (cfDNA)<i>MET</i> amplificationTargeted therapyTargeted therapy0302 clinical medicineCirculating tumor cellestudios prospectivosNeoplasmsantineoplásicosProspective Studieslcsh:QH301-705.5Circulating tumor cells (CTCs)neoplasiasGeneral MedicineProto-Oncogene Proteins c-mettargeted therapyNeoplastic Cells CirculatingErbB ReceptorsCell-free fetal DNA030220 oncology & carcinogenesisinhibidores de proteína cinasasBiomarker (medicine)FemaleMET protein expressionCell-Free Nucleic AcidsMET amplificationmedicine.medical_specialtycirculating tumor cells (CTCs)estudios de casos y controlesMet amplificationCirculating free DNA (cfDNA)Antineoplastic AgentsArticle03 medical and health sciencesInternal medicinemedicineBiomarkers TumorHumansLiquid biopsyProtein Kinase InhibitorsRetrospective Studiesbusiness.industryHead and neck cancerestudios retrospectivosLiquid BiopsyCancermedicine.disease030104 developmental biologylcsh:Biology (General)Drug Resistance NeoplasmCase-Control StudiesMET copy numberbusinessCells
researchProduct

Prevalence and clinical association of gene mutations through multiplex mutation testing in patients with NSCLC

2017

[EN] Background Reported prevalence of driver gene mutations in non-small-cell lung cancer (NSCLC) is highly variable and clinical correlations are emerging. Using NSCLC biomaterial and clinical data from the European Thoracic Oncology Platform Lungscape iBiobank, we explore the epidemiology of mutations and association to clinicopathologic features and patient outcome (relapse-free survival, time-to-relapse, overall survival). Methods Clinically annotated, resected stage I¿III NSCLC FFPE tissue was assessed for gene mutation using a microfluidics-based multiplex PCR platform. Mutant-allele detection sensitivity is¿>1% for most of the ~150 (13 genes) mutations covered in the multiplex test.…

0301 basic medicineOncologyMaleLung NeoplasmsDNA Mutational AnalysisKRAS MUTATIONSGene mutationmedicine.disease_cause0302 clinical medicinemultiplex mutation analysisCarcinoma Non-Small-Cell LungMultiplex mutation analysisPrevalenceMultiplexAnaplastic Lymphoma KinaseHETEROGENEITYAged 80 and overMutationSmokingHematologyMiddle AgedProto-Oncogene Proteins c-metProgression-Free SurvivalOncology030220 oncology & carcinogenesisAdenocarcinomaFemaleKRASPREDICT SURVIVALAdultmedicine.medical_specialtyEGFRCELL LUNG-CANCERPrognosis molecular stagingprognosis molecular stagingEGFR KRAS PIK3CAVALIDATION03 medical and health sciencesYoung AdultInternal medicineMultiplex polymerase chain reactionmedicineKRASTYROSINE KINASE INHIBITORSHumansProgression-free survivalLung cancerAgedNeoplasm Stagingbusiness.industryMICROBIOLOGIAADENOCARCINOMAAMPLIFICATIONPIK3CAmedicine.disease030104 developmental biologynon-small-cell lung cancerMutationOVEREXPRESSIONbusinessMultiplex Polymerase Chain ReactionNon-small-cell lung cancerAnnals of Oncology
researchProduct

Cabozantinib targets bone microenvironment modulating human osteoclast and osteoblast functions

2016

Cabozantinib, a c-MET and vascular endothelial growth factor receptor 2 inhibitor, demonstrated to prolong progression free survival and improve skeletal disease-related endpoints in castration-resistant prostate cancer and in metastatic renal carcinoma. Our purpose is to investigate the direct effect of cabozantinib on bone microenvironment using a total human model of primary osteoclasts and osteoblasts.Osteoclasts were differentiated from monocytes isolated from healthy donors; osteoblasts were derived from human mesenchymal stem cells obtained from bone fragments of orthopedic surgery patients. Osteoclast activity was evaluated by tartrate resistant acid phosphatase (TRAP) staining and …

0301 basic medicinePyridines -- pharmacologyPyridinesPyridineImmunoenzyme TechniqueOsteoclastsApoptosisRANK Ligand -- genetics -- metabolismImmunoenzyme Techniqueschemistry.chemical_compoundBone Resorption -- drug therapy -- metabolism -- pathology0302 clinical medicineOsteogenesisCathepsin KMedicineAnilidesAnilides -- pharmacologyOsteoprotegerin -- genetics -- metabolismOsteoclasts -- cytology -- drug effects -- physiologyHuman primary cellCells CulturedTartrate-resistant acid phosphataseReceptor Activator of Nuclear Factor-kappa B -- genetics -- metabolismbiologyProto-Oncogene Proteins c-met -- genetics -- metabolismReceptor Activator of Nuclear Factor-kappa BReverse Transcriptase Polymerase Chain ReactionOsteoblastOsteogenesiOsteoblastCell DifferentiationSciences bio-médicales et agricolesProto-Oncogene Proteins c-metOsteoblasts -- cytology -- drug effects -- physiologymedicine.anatomical_structureCell Differentiation -- drug effectsOncologyRANKL030220 oncology & carcinogenesishuman primary cellsOsteoclastosteoprotegerin (OPG)bone microenvironmentHumanResearch Papermusculoskeletal diseasesmedicine.medical_specialtyCabozantinibBlotting WesternOsteogenesis -- drug effects -- physiologyReal-Time Polymerase Chain ReactionBone resorption03 medical and health sciencesOsteoprotegerinOsteoclastcabozantinibInternal medicineHumansRNA MessengerBone ResorptionCell ProliferationOsteoblastsbusiness.industryRANK LigandAnilideOsteoprotegerinApoptosiBone microenvironment; Cabozantinib; Human primary cells; Osteoprotegerin (OPG); Receptor activator of nuclear factor-kb ligand (RANKL); Anilides; Apoptosis; Blotting Western; Bone Resorption; Cell Differentiation; Cell Proliferation; Cells Cultured; Humans; Immunoenzyme Techniques; Osteoblasts; Osteoclasts; Osteogenesis; Osteoprotegerin; Proto-Oncogene Proteins c-met; Pyridines; RANK Ligand; RNA Messenger; Real-Time Polymerase Chain Reaction; Receptor Activator of Nuclear Factor-kappa B; Reverse Transcriptase Polymerase Chain Reaction; Oncology030104 developmental biologyEndocrinologychemistrybiology.proteinbusinessRNA Messenger -- geneticsreceptor activator of nuclear factor-kb ligand (RANKL)
researchProduct