Search results for "calcium phosphates"
showing 10 items of 44 documents
Influence of surface porosity and pH on bacterial adherence to hydroxyapatite and biphasic calcium phosphate bioceramics
2008
Hydroxyapatite (HA) and biphasic calcium phosphate (BCP) ceramic materials are widely employed as bone substitutes due to their porous and osteoconductive structure. Their porosity and the lowering of surrounding pH as a result of surgical trauma may, however, predispose these materials to bacterial infections. For this reason, the influence of porosity and pH on the adherence of common Gram-positive bacteria to the surfaces of these materials requires investigation. Mercury intrusion porosimetry measurements revealed that the pore size distribution of both bioceramics had, on a logarithmic scale, a sinusoidal frequency distribution ranging from 50 to 300 nm, with a mean pore diameter of 20…
Composite Hydrogels of Alkyl Functionalized Gellan Gum Derivative and Hydroxyapatite/Tricalcium Phosphate Nanoparticles as Injectable Scaffolds for b…
2021
An alkyl functionalized gellan gum derivative was here used to produce hydrogels containing hydroxyapatite and tricalcium phosphate nanoparticles as injectable nanostructured scaffolds for bone regeneration. The amphiphilic nature of the polysaccharide derivative along with its thermotropic behavior and ionotropic crosslinking features made possible to produce injectable bone mimetic scaffolds that can be used to release viable cells and osteoinductive biomolecules. The influence of different nanoparticles concentration on the rheological and physicochemical properties of the injectable systems was studied. We found that the presence of inorganic nanoparticles reinforces the three-dimension…
Collagen-embedded hydroxylapatite–beta-tricalcium phosphate–silicon dioxide bone substitute granules assist rapid vascularization and promote cell gr…
2010
In the present study we assessed the biocompatibility in vitro and in vivo of a low-temperature sol-gel-manufactured SiO(2)-based bone graft substitute. Human primary osteoblasts and the osteoblastic cell line, MG63, cultured on the SiO(2) biomatrix in monoculture retained their osteoblastic morphology and cellular functionality in vitro. The effect of the biomaterial in vivo and its vascularization potential was tested subcutaneously in Wistar rats and demonstrated both rapid vascularization and good integration within the peri-implant tissue. Scaffold degradation was progressive during the first month after implantation, with tartrate-resistant acid phosphatase-positive macrophages being …
Nonenzymatic Transformation of Amorphous CaCO3 into Calcium Phosphate Mineral after Exposure to Sodium Phosphate in Vitro: Implications for in Vivo H…
2015
Studies indicate that mammalian bone formation is initiated at calcium carbonate bioseeds, a process that is driven enzymatically by carbonic anhydrase (CA). We show that amorphous calcium carbonate (ACC) and bicarbonate (HCO3 (-) ) cause induction of expression of the CA in human osteogenic SaOS-2 cells. The mineral deposits formed on the surface of the cells are rich in C, Ca and P. FTIR analysis revealed that ACC, vaterite, and aragonite, after exposure to phosphate, undergo transformation into calcium phosphate. This exchange was not seen for calcite. The changes to ACC, vaterite, and aragonite depended on the concentration of phosphate. The rate of incorporation of phosphate into ACC, …
Calcium Phosphate-Coated Titanium Implants in the Mandible: Limitations of the in vivo Minipig Model
2020
<b><i>Introduction:</i></b> We aimed to compare implant osseointegration with calcium phosphate (CaP) surfaces and rough subtractive-treated sandblasted/acid etched surfaces (SA) in an in vivo minipig mandible model. <b><i>Materials and Methods:</i></b> A total of 36 cylindrical press-fit implants with two different surfaces (CaP, <i>n</i> = 18; SA, <i>n</i> = 18) were inserted bilaterally into the mandible of 9 adult female minipigs. After 2, 4, and 8 weeks, we analyzed the cortical bone-to-implant contact (cBIC; %) and area coverage of bone-to-implant contact within representative bone chambers (aBIC; %). <b><…
Influence of β-tricalcium phosphate granule size and morphology on tissue reaction in vivo.
2010
In this study the tissue reaction to five different β-tricalcium phosphate (β-TCP)-based bone substitute materials differing only in size, shape and porosity was analyzed over 60 days, at 3, 10, 15, 30 and 60 days after implantation. Using the subcutaneous implantation model in Wistar rats both the inflammatory response within the implantation bed and the resulting vascularization of the biomaterials were qualitatively and quantitatively assessed by means of standard and special histological staining methods. The data from this study showed that all investigated β-TCP bone substitutes induced the formation of multinucleated giant cells. Changes in size, shape and porosity influenced the int…
Implantation of silicon dioxide-based nanocrystalline hydroxyapatite and pure phase beta-tricalciumphosphate bone substitute granules in caprine musc…
2012
Abstract Background Osteoinductive bone substitutes are defined by their ability to induce new bone formation even at heterotopic implantation sites. The present study was designed to analyze the potential osteoinductivity of two different bone substitute materials in caprine muscle tissue. Materials and methods One gram each of either a porous beta-tricalcium phosphate (β-TCP) or an hydroxyapatite/silicon dioxide (HA/SiO2)-based nanocrystalline bone substitute material was implanted in several muscle pouches of goats. The biomaterials were explanted at 29, 91 and 181 days after implantation. Conventional histology and special histochemical stains were performed to detect osteoblast precurs…
Induction of carbonic anhydrase in SaOS-2 cells, exposed to bicarbonate and consequences for calcium phosphate crystal formation.
2013
Ca-phosphate/hydroxyapatite crystals constitute the mineralic matrix of vertebrate bones, while Ca-carbonate dominates the inorganic matrix of otoliths. In addition, Ca-carbonate has been identified in lower percentage in apatite crystals. By using the human osteogenic SaOS-2 cells it could be shown that after exposure of the cells to Ca-bicarbonate in vitro, at concentrations between 1 and 10 mm, a significant increase of Ca-deposit formation results. The crystallite nodules formed on the surfaces of SaOS-2 cells become denser and larger in the presence of bicarbonate if simultaneously added together with the mineralization activation cocktail (β-glycerophosphate/ascorbic acid/dexamethason…
Short time guided bone regeneration using beta-tricalcium phosphate with and without fibronectin. An experimental study in rats
2020
Background The aim of this histomorphometric study was to assess the bone regeneration potential of beta-tricalcium phosphate with fibronectin (β-TCP-Fn) in critical-sized defects (CSDs) in rats calvarial, to know whether Fn improves the new bone formation in a short time scope. Material and Methods CSDs were created in 30 Sprague Dawley rats, and divided into four groups (2 or 6 weeks of healing) and type of filling (β-TCP-Fn, β-TCP, empty control). Variables studied were augmented area (AA), gained tissue (GT), mineralized/non mineralized bone matrix (MBM/NMT) and bone substitute (BS). Results 60 samples at 2 and six weeks were evaluated. AA was higher for treatment groups comparing to …
Charge State of Silver Halide Colloids Determines the Antibacterial Activity in Amorphous Calcium Phosphate
2013
Removal of bacteria is important not only at implantation, but after long-term implant/prosthesis use. This requires strategies that employ different approaches for combating bacteria. Halides have the potential of an additional mechanism, and together with silver may provide a more powerful antibacterial strategy. Silver iodide was synthesized as colloids with a positive and negative charge and incorporated into an amorphous calcium phosphate (ACP) to provide a possible greater antibacterial action. Colloids were characterized by FTIR spectroscopy and the charge measured by zeta potential. Phase analysis by X-ray diffraction patterns confirmed the formation of b-AgI nanoparticles. Minimum …