Search results for "camp"

showing 10 items of 1995 documents

The NG2 Protein Is Not Required for Glutamatergic Neuron-NG2 Cell Synaptic Signaling.

2014

NG2 glial cells (as from now NG2 cells) are unique in receiving synaptic input from neurons. However, the components regulating formation and maintenance of these neuron–glia synapses remain elusive. The transmembrane protein NG2 has been considered a potential mediator of synapse formation and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) clustering, because it contains 2 extracellular Laminin G/Neurexin/Sex Hormone-Binding Globulin domains, which in neurons are crucial for formation of transsynaptic neuroligin– neurexin complexes. NG2 is connected via Glutamate Receptor-Interacting Protein with GluA2/3-containing AMPARs, thereby possibly mediating receptor clus…

0301 basic medicineCognitive NeuroscienceNeurexinSynaptogenesisGlutamic AcidNeuroliginMice TransgenicBiologyNeurotransmissionHippocampusSynaptic Transmission03 medical and health sciencesCellular and Molecular Neuroscience0302 clinical medicinePostsynaptic potentialAnimalsReceptors AMPAAntigensNeuronsMembrane Proteins030104 developmental biologynervous systemSynaptic plasticitySynapsesProteoglycansSynaptic signalingNeurosciencePostsynaptic densityNeuroglia030217 neurology & neurosurgeryCerebral cortex (New York, N.Y. : 1991)
researchProduct

Synaptic Phospholipid Signaling Modulates Axon Outgrowth via Glutamate-dependent Ca2+-mediated Molecular Pathways.

2015

Abstract Altered synaptic bioactive lipid signaling has been recently shown to augment neuronal excitation in the hippocampus of adult animals by activation of presynaptic LPA2-receptors leading to increased presynaptic glutamate release. Here, we show that this results in higher postsynaptic Ca2+ levels and in premature onset of spontaneous neuronal activity in the developing entorhinal cortex. Interestingly, increased synchronized neuronal activity led to reduced axon growth velocity of entorhinal neurons which project via the perforant path to the hippocampus. This was due to Ca2+-dependent molecular signaling to the axon affecting stabilization of the actin cytoskeleton. The spontaneous…

0301 basic medicineCognitive NeuroscienceNeuronal OutgrowthHippocampusGlutamic AcidAxon hillockSynaptic Transmission03 medical and health sciencesCellular and Molecular NeuroscienceMice0302 clinical medicinePostsynaptic potentialmedicinePremovement neuronal activityAnimalsbioactive phospholipidsCalcium SignalingAxonearly synchronized activityCells CulturedPhospholipidsChemistryOriginal ArticlesEntorhinal cortexPerforant pathActin cytoskeletonAxonsCell biologyCa2+-signalingentorhinal–hippocampal formation030104 developmental biologymedicine.anatomical_structureaxon outgrowthnervous systemCalcium030217 neurology & neurosurgeryMetabolic Networks and PathwaysCerebral cortex (New York, N.Y. : 1991)
researchProduct

Bumetanide prevents brain trauma-induced depressive-like behavior

2019

AbstractBrain trauma triggers a cascade of deleterious events leading to enhanced incidence of drug resistant epilepsies, depression and cognitive dysfunctions. The underlying mechanisms leading to these alterations are poorly understood and treatment that attenuates those sequels not available. Using controlled-cortical impact (CCI) as experimental model of brain trauma in adult mouse we found a strong suppressive effect of the sodium-potassium-chloride importer (NKCC1) specific antagonist bumetanide on appearance of depression-like behavior. We demonstrate that this alteration in behavior is associated with a block of CCI-induced decrease in parvalbumin-positive interneurons and impairmen…

0301 basic medicineDOWN-REGULATIONpotassium chloride cotransporter 2 (KCC2)[SDV.NEU.NB]Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]/NeurobiologyHippocampusUP-REGULATION0302 clinical medicineMedicineCOTRANSPORTER KCC2NEURAL STEM-CELLBrain traumaDepression (differential diagnoses)Original Research0303 health sciencesNeurogenesisDepolarizationNeural stem cell3. Good healthADULT HIPPOCAMPAL NEUROGENESISneurogenesis[SDV.SP.PHARMA] Life Sciences [q-bio]/Pharmaceutical sciences/PharmacologydepressionBumetanidemedicine.druginterneuron cell deathpsychiatric diseaseINHIBITIONbumetanidelcsh:RC321-571Cellular and Molecular Neuroscience03 medical and health sciencesINJURYlcsh:Neurosciences. Biological psychiatry. NeuropsychiatryMolecular Biology030304 developmental biologybusiness.industryMechanism (biology)GRANULE CELLSDentate gyrusAntagonist3112 Neurosciences[SDV.NEU.NB] Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]/Neurobiology030104 developmental biologyDENTATE GYRUSDIURETIC BUMETANIDE[SDV.SP.PHARMA]Life Sciences [q-bio]/Pharmaceutical sciences/PharmacologybusinessNeuroscience030217 neurology & neurosurgeryNeuroscience
researchProduct

The activation of NMDA receptors alters the structural dynamics of the spines of hippocampal interneurons

2017

N-Methyl-d-Aspartate receptors (NMDARs) are present in both pyramidal neurons and interneurons of the hippocampus. These receptors play a key role in the structural plasticity of excitatory neurons, but to date little is known about their influence on the remodeling of interneurons. Among hippocampal interneurons, the somatostatin expressing cells in the CA1 stratum oriens are of special interest because of their functional importance and structural characteristics: they display dendritic spines, which change their density in response to different stimuli. In order to understand the role of NMDAR activation on the structural dynamics of the spines of somatostatin expressing interneurons in …

0301 basic medicineDendritic spineDendritic SpinesHippocampusHippocampal formationBiologyHippocampusReceptors N-Methyl-D-Aspartate03 medical and health sciences0302 clinical medicineInterneuronsAnimalsReceptorCells CulturedMice KnockoutPyramidal Cellsmusculoskeletal neural and ocular physiologyGeneral NeuroscienceLong-term potentiationSpine030104 developmental biologySomatostatinnervous systemExcitatory postsynaptic potentialNMDA receptorSomatostatinNeuroscience030217 neurology & neurosurgeryNeuroscience Letters
researchProduct

Alterations in Tau Protein Level and Phosphorylation State in the Brain of the Autistic-Like Rats Induced by Prenatal Exposure to Valproic Acid

2021

Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by deficient social interaction and communication besides repetitive, stereotyped behaviours. A characteristic feature of ASD is altered dendritic spine density and morphology associated with synaptic plasticity disturbances. Since microtubules (MTs) regulate dendritic spine morphology and play an important role in spine development and plasticity the aim of the present study was to investigate the alterations in the content of neuronal α/β-tubulin and Tau protein level as well as phosphorylation state in the valproic acid (VPA)-induced rat model of autism. Our results indicated that maternal exposure to VPA indu…

0301 basic medicineDendritic spineHippocampuslcsh:Chemistry0302 clinical medicinePregnancyTubulinPhosphorylationlcsh:QH301-705.5SpectroscopyValproic AcidbiologyERK1/2Chemistryautism spectrum disorders (ASD)valproic acid (VPA)BrainGeneral MedicineImmunohistochemistryComputer Science Applicationsmedicine.anatomical_structureCerebral cortexMaternal ExposurePrenatal Exposure Delayed EffectsFemaleDisease Susceptibilitymedicine.drugSignal Transductionmedicine.medical_specialtyCDK5Tau proteintau ProteinsCatalysisArticleInorganic Chemistry03 medical and health sciencesInternal medicinemental disordersmedicineAnimalsPhysical and Theoretical ChemistryAutistic DisorderMolecular BiologyCyclin-dependent kinase 5GSK-3βValproic AcidOrganic Chemistryα/β-tubulinRatsEnzyme Activation030104 developmental biologyEndocrinologylcsh:Biology (General)lcsh:QD1-999MAP-TauChromatolysisSynaptic plasticitybiology.proteinAkt/mTOR signalling030217 neurology & neurosurgeryBiomarkersInternational Journal of Molecular Sciences
researchProduct

Neuronal LRP4 regulates synapse formation in the developing CNS

2017

The low-density lipoprotein receptor-related protein 4 (LRP4) is essential in muscle fibers for the establishment of the neuromuscular junction. Here, we show that LRP4 is also expressed by embryonic cortical and hippocampal neurons, and that downregulation of LRP4 in these neurons causes a reduction in density of synapses and number of primary dendrites. Accordingly, overexpression of LRP4 in cultured neurons had the opposite effect inducing more but shorter primary dendrites with an increased number of spines. Transsynaptic tracing mediated by rabies virus revealed a reduced number of neurons presynaptic to the cortical neurons in which LRP4 was knocked down. Moreover, neuron-specific kno…

0301 basic medicineDendritic spineRabiesSynaptogenesisHippocampusBiologyHippocampal formationHippocampusNeuromuscular junctionGene Knockout TechniquesMice03 medical and health sciences0302 clinical medicinemedicineAnimalsLrp4 ; Central Nervous System Development ; Synapse Formation ; Dendritogenesis ; Transsynaptic Tracing ; Agrin ; In Utero Electroporation ; Psd95 ; Bassoon ; MouseMolecular BiologyCells CulturedLDL-Receptor Related ProteinsCerebral CortexGene knockdownAgrinDendritesCortex (botany)Cell biologyMice Inbred C57BL030104 developmental biologymedicine.anatomical_structureReceptors LDLnervous systemRabies virusSynapsesImmunology030217 neurology & neurosurgeryDevelopmental Biology
researchProduct

Regulation of Dendritic Spine Morphology in Hippocampal Neurons by Copine-6.

2015

Dendritic spines compartmentalize information in the brain, and their morphological characteristics are thought to underly synaptic plasticity. Here we identify copine-6 as a novel modulator of dendritic spine morphology. We found that brain-derived neurotrophic factor (BDNF) - a molecule essential for long-term potentiation of synaptic strength - upregulated and recruited copine-6 to dendritic spines in hippocampal neurons. Overexpression of copine-6 increased mushroom spine number and decreased filopodia number, while copine-6 knockdown had the opposite effect and dramatically increased the number of filopodia, which lacked PSD95. Functionally, manipulation of post-synaptic copine-6 level…

0301 basic medicineDendritic spineVesicular Inhibitory Amino Acid Transport Proteinsdrug effects [Synapses]Tropomyosin receptor kinase BHippocampal formationgenetics [Carrier Proteins]pharmacology [Brain-Derived Neurotrophic Factor]Hippocampusmetabolism [Vesicular Inhibitory Amino Acid Transport Proteins]Mtap2 protein ratMice0302 clinical medicineNeurotrophic factorsdrug effects [Synaptic Vesicles]genetics [Nerve Tissue Proteins]Cells Culturedultrastructure [Neurons]NeuronsChemistryLong-term potentiationSynaptic Potentialsphysiology [Neurons]physiology [Dendritic Spines]Cell biologyultrastructure [Dendritic Spines]metabolism [Receptor trkB]Synaptic VesiclesFilopodiaultrastructure [Synaptosomes]Disks Large Homolog 4 ProteinMicrotubule-Associated ProteinsCognitive NeuroscienceDendritic Spinesmetabolism [Disks Large Homolog 4 Protein]Nerve Tissue Proteinsgenetics [Receptor trkB]03 medical and health sciencesCellular and Molecular NeuroscienceOrgan Culture Techniquesphysiology [Synaptic Vesicles]metabolism [Vesicular Glutamate Transport Protein 1]TrkB protein ratdrug effects [Synaptic Potentials]Synaptic vesicle recyclingAnimalsHumansReceptor trkBddc:610metabolism [Synaptosomes]metabolism [Nerve Tissue Proteins]Viaat protein ratBrain-Derived Neurotrophic Factormetabolism [Microtubule-Associated Proteins]Rats030104 developmental biologygenetics [Synaptic Potentials]nervous systemcytology [Hippocampus]Synaptic plasticityultrastructure [Synapses]SynapsesVesicular Glutamate Transport Protein 1CPNE6 protein ratphysiology [Synapses]Carrier Proteins030217 neurology & neurosurgerymetabolism [Carrier Proteins]SynaptosomesCerebral cortex (New York, N.Y. : 1991)
researchProduct

NMDA Receptors Regulate the Structural Plasticity of Spines and Axonal Boutons in Hippocampal Interneurons

2017

N-methyl-D-aspartate receptors (NMDARs) are present in both pyramidal neurons and interneurons of the hippocampus. These receptors play an important role in the adult structural plasticity of excitatory neurons, but their impact on the remodeling of interneurons is unknown. Among hippocampal interneurons, somatostatin-expressing cells located in the stratum oriens are of special interest because of their functional importance and structural characteristics: they display dendritic spines, which change density in response to different stimuli. In order to understand the role of NMDARs on the structural plasticity of these interneurons, we have injected acutely MK-801, an NMDAR antagonist, to …

0301 basic medicineDendritic spineorganotypic culturesEn passantHippocampusHippocampal formationBiologyspine dynamicslcsh:RC321-57103 medical and health sciencesCellular and Molecular Neuroscience0302 clinical medicineReceptorlcsh:Neurosciences. Biological psychiatry. NeuropsychiatryOriginal ResearchMK-801interneuronsmusculoskeletal neural and ocular physiologyaxonal boutonsNMDARSpine (zoology)030104 developmental biologynervous systemExcitatory postsynaptic potentialNMDA receptorNeuroscience030217 neurology & neurosurgeryNeuroscienceFrontiers in Cellular Neuroscience
researchProduct

Generation and Coherent Control of Pulsed Quantum Frequency Combs

2018

We present a method for the generation and coherent manipulation of pulsed quantum frequency combs. Until now, methods of preparing high-dimensional states on-chip in a practical way have remained elusive due to the increasing complexity of the quantum circuitry needed to prepare and process such states. Here, we outline how high-dimensional, frequency-bin entangled, two-photon states can be generated at a stable, high generation rate by using a nested-cavity, actively mode-locked excitation of a nonlinear micro-cavity. This technique is used to produce pulsed quantum frequency combs. Moreover, we present how the quantum states can be coherently manipulated using standard telecommunications…

0301 basic medicineDensity matrixOptics and PhotonicsPhotonGeneral Chemical EngineeringSettore ING-INF/01 - ElettronicaGeneral Biochemistry Genetics and Molecular Biology03 medical and health sciencesEngineering0302 clinical medicineQuantum stateQuantum DotsQuantumQCQuantum opticsPhysicsGeneral Immunology and Microbiologybusiness.industryGeneral NeuroscienceNonlinear opticsSettore ING-INF/02 - Campi Elettromagnetici030104 developmental biologyCoherent controlQuantum optics Integrated photonic devices Mode-locked lasers Nonlinear optics Four-wave mixing Frequency combs High- dimensional statesFrequency domainOptoelectronicsbusiness030217 neurology & neurosurgeryJournal of Visualized Experiments
researchProduct

Bioaccessibility study of plant sterol-enriched fermented milks.

2015

The bioaccessibility (BA) of total and individual plant sterols (PS) of four commercial PS-enriched fermented milk beverages (designated as A to D) was evaluated using in vitro gastrointestinal digestion including the formation of mixed micelles. The fat content of the samples ranged from 1.1 to 2.2% (w/w), and PS enrichment was between 1.5 and 2.9% (w/w). β-Sitosterol, contained in all samples, was higher in samples A and B (around 80% of total PS). The campesterol content was C (22%) > A (7%) > B (5%). Sitostanol was the most abundant in sample D (85%). Stigmasterol was only present in sample C (33%). The greatest BA percentage for total PS corresponded to samples A and B (16–17%), follow…

0301 basic medicineDietary FiberCultured Milk ProductsCampesterolStigmasterolBiological AvailabilityModels BiologicalGastrointestinal digestionMatrix (chemical analysis)03 medical and health scienceschemistry.chemical_compoundIngredientFunctional FoodDietary CarbohydratesFood scienceMicelles030109 nutrition & dieteticsStigmasterolChemistryPhytosterolsGeneral MedicinePlant sterolDietary FatsSitosterolsGastrointestinal TractCholesterolFood FortifiedFermentationDigestionDigestionFood ScienceFoodfunction
researchProduct