Search results for "campi elettromagnetici"

showing 10 items of 155 documents

High-dimensional one-way quantum processing implemented on d-level cluster states

2019

Taking advantage of quantum mechanics for executing computational tasks faster than classical computers1 or performing measurements with precision exceeding the classical limit2,3 requires the generation of specific large and complex quantum states. In this context, cluster states4 are particularly interesting because they can enable the realization of universal quantum computers by means of a ‘one-way’ scheme5, where processing is performed through measurements6. The generation of cluster states based on sub-systems that have more than two dimensions, d-level cluster states, provides increased quantum resources while keeping the number of parties constant7, and also enables novel algorithm…

PhysicsQuantum opticsQuantum opticsQuantum informationGeneral Physics and AstronomySettore ING-INF/02 - Campi ElettromagneticiQuantum entanglementTopologySettore ING-INF/01 - Elettronica01 natural sciences010305 fluids & plasmasMicroresonatorQuantum state0103 physical sciencesCluster (physics)Quantum information010306 general physicsQuantum information scienceQuantumQCQuantum computerNature Physics
researchProduct

Model Analysis of Hydrometeor Scattering Effects on Free Space Near-Infrared Links

2012

A promising technology for peer-to-peer connections and urban area networks is represented by wireless communications through free space using optical carrier (Free Space Optics, FSO). This technology ensures high data rates, with relatively low error rates, low power consumption and inherent security. Nevertheless FSO links are quite sensitive to atmospheric condition. Fog droplets, but also raindrops and snowflakes, may introduce severe path attenuation which drastically reduces the channel availability. A parametric model to simulate droplets scattering effects over the FSO link in terms of extinction coefficient, albedo factor and asymmetry coefficient as function of the particle water …

PhysicsScatteringbusiness.industrySettore ING-INF/03 - TelecomunicazioniAttenuationOptical communicationSettore ING-INF/02 - Campi ElettromagneticiMolar absorptivityOpticsfree space optics; water contents; atmospheric data and optical modellingfree space optics atmospheric data and optical modelling water contents.atmospheric data and optical modellingOptical Carrier transmission ratesParametric modelwater contentsfree space opticsSnowflakebusinessFree-space optical communication
researchProduct

Moderate-to-Strong Turbulence Generation in a Laboratory Indoor Free Space Optics Link and Error Mitigation via RaptorQ Codes

2016

Free Space Optics (FSO) is rapidly gaining interest as a line-of sight communication technology that offers capabilities similar - in terms of bandwidth and transfer rates - to optical fibre, also possessing several advantages compared with traditional radio frequency links. However, FSO link quality can be strongly affected by unfavourable weather conditions and also by the phenomenon of optical turbulence, even in clear sky. In this work, we have implemented an indoor FSO link and generated moderate-to-strong turbulence conditions along the optical path by using heaters and a mechanical ventilation system. In this way, we have been able to investigate the effects of the generated turbulen…

Physicsbusiness.industryNetwork packetFree Space Optics (FSO) indoor link turbulence generation packet loss rateless codes RaptorQ codesSettore ING-INF/03 - Telecomunicazioni05 social sciencesBandwidth (signal processing)050801 communication & media studies020206 networking & telecommunicationsSettore ING-INF/02 - Campi Elettromagnetici02 engineering and technologySettore ING-INF/01 - ElettronicaData recovery0508 media and communicationsOptical path0202 electrical engineering electronic engineering information engineeringBit error rateElectronic engineeringRadio frequencybusinessAdaptive opticsFree-space optical communication
researchProduct

Rateless Codes Performance Tests On Terrestrial FSO Time-Correlated Channel Model

2012

Free Space Optics (FSO) links are affected by several impairments: optical turbulence, scattering, absorption, and pointing. In particular, atmospheric optical turbulence generates optical power fluctuations at the receiver that can degrade communications with fading events, especially, in high data rate links. A way to mitigate FSO link outages can be to add a coding to communications. Nevertheless, in order to study innovative solutions (software or hardware) and to improve the FSO link performance it needs accurate testing models. In this paper we describe an accurate time-correlated channel model able to predict random temporal fluctuations of optical signal irradiance caused by optical…

Physicsbusiness.industrySettore ING-INF/03 - Telecomunicazionicorrelated channelrateless code.Fountain codeOptical powerSettore ING-INF/02 - Campi ElettromagneticiOptical performance monitoringRaptorQ (RQ)Settore ING-INF/01 - ElettronicaSoftwareFree Space Optics (FSO)Luby Tranform (LT)Electronic engineeringFadingbusinessRaptor codeTransform codingAtmospheric opticsComputer Science::Information TheoryCoding (social sciences)Free-space optical communication
researchProduct

Optimal Design of an X-Band, Fully-Coaxial, Easily-Tunable Broadband Power Equalizer for a Microwave Power Module

2020

A microwave power module (MPM), which is a hybrid combination of a solid-state power amplifier (SSPA) as a driver and a traveling-wave tube amplifier (TWT) as the final high power stage, is a high-power device largely used for radar applications. A gain equalizer is often required to flatten the TWT output power gain owing to its big gain fluctuations over the operating frequency range. In this paper, the design of an X-band, fully-coaxial, easily-tunable broadband power equalizer for an MPM is presented. The structure is composed of a coaxial waveguide as the main transmission line and a coaxial cavity loaded with absorbing material as a resonant unit. Sensitivity analyses of the attenuati…

Power gainMaterials scienceComputer Networks and CommunicationsAcousticsX bandlcsh:TK7800-836002 engineering and technologyGain equalizerTraveling-wave tube01 natural sciencesSettore ING-INF/01 - Elettronicalaw.inventionlawTransmission linetraveling wave tubeMicrowave Power Module0103 physical sciencesBroadband0202 electrical engineering electronic engineering information engineeringElectrical and Electronic Engineering010302 applied physicsmicrowave power moduleAmplifierlcsh:Electronics020206 networking & telecommunicationsSettore ING-INF/02 - Campi ElettromagneticiSettore ING-IND/31 - ElettrotecnicaHardware and ArchitectureControl and Systems EngineeringSignal ProcessingtunablebroadbandCoaxialcoaxialradar
researchProduct

Scaling On-Chip Entangled Photon States to Higher Dimensions

2017

Considerable efforts have recently focused on advancing quantum information pro- cessing by increasing the number of qubits (the simplest unit of quantum information) in nonclassical systems such as ultracold atoms and superconducting circuits. A complementary approach to scale up infor- mation content is to move from two-level (qubit) to multilevel (quDit) systems.

Quantum Optics; Entangled LightQuantum OpticEntangled LightSettore ING-INF/02 - Campi ElettromagneticiSettore ING-INF/01 - Elettronica
researchProduct

On-chip generation of high-dimensional entangled quantum states and their coherent control

2017

Optical quantum states based on entangled photons are essential for solving questions in fundamental physics and are at the heart of quantum information science1. Specifically, the realization of high-dimensional states (D-level quantum systems, that is, qudits, with D > 2) and their control are necessary for fundamental investigations of quantum mechanics2, for increasing the sensitivity of quantum imaging schemes3, for improving the robustness and key rate of quantum communication protocols4, for enabling a richer variety of quantum simulations5, and for achieving more efficient and error-tolerant quantum computation6. Integrated photonics has recently become a leading platform for the co…

Quantum opticFiber optics communicationQuantum imaging01 natural sciencesSettore ING-INF/01 - Elettronica010309 opticsOpen quantum systemQC350Quantum mechanics0103 physical sciencesQuantum information010306 general physicsQuantum information scienceQCSingle photons and quantum effectQuantum computerPhysicsQuantum networkMultidisciplinaryTheoryofComputation_GENERALIntegrated opticSettore ING-INF/02 - Campi ElettromagneticiQuantum PhysicsQC0350Quantum technologyPhotonicsQuantum teleportation
researchProduct

Practical system for the generation of pulsed quantum frequency combs

2017

The on-chip generation of large and complex optical quantum states will enable low-cost and accessible advances for quantum technologies, such as secure communications and quantum computation. Integrated frequency combs are on-chip light sources with a broad spectrum of evenly-spaced frequency modes, commonly generated by four-wave mixing in optically-excited nonlinear micro-cavities, whose recent use for quantum state generation has provided a solution for scalable and multi-mode quantum light sources. Pulsed quantum frequency combs are of particular interest, since they allow the generation of single-frequency-mode photons, required for scaling state complexity towards, e.g., multi-photon…

Quantum opticPhysics::Optics02 engineering and technologyPhotodetectionQuantum imagingIntegrated optics device01 natural sciencesSettore ING-INF/01 - Elettronica010309 opticsOpticsQuantum state0103 physical sciencesQuantum informationQCQuantum computerPhysicsQuantum opticsParametric oscillators and amplifierbusiness.industryQuantum sensorQSettore ING-INF/02 - Campi Elettromagnetici021001 nanoscience & nanotechnologyAtomic and Molecular Physics and OpticsQC0350Quantum technologyNonlinear optics four-wave mixingOptoelectronicsMode-locked lasers.0210 nano-technologybusiness
researchProduct

Complex quantum state generation and coherent control based on integrated frequency combs

2019

The investigation of integrated frequency comb sources characterized by equidistant spectral modes was initially driven by considerations towards classical applications, seeking a more practical and miniaturized way to generate stable broadband sources of light. Recently, in the context of scaling the complexity of optical quantum circuits, these on-chip approaches have provided a new framework to address the challenges associated with non-classical state generation and manipulation. For example, multi-photon and high-dimensional states were to date either inaccessible, lacked scalability, or were difficult to manipulate, requiring elaborate approaches. The emerging field of quantum frequen…

Quantum opticsPhotonbusiness.industryComputer sciencePhysics::OpticsNanophotonics Photonic integrated circuits Quantum entanglement Spontaneous emissionSettore ING-INF/02 - Campi Elettromagnetici02 engineering and technologyQuantum entanglementSettore ING-INF/01 - ElettronicaAtomic and Molecular Physics and OpticsFrequency combQC350020210 optoelectronics & photonicsCoherent controlQuantum state0202 electrical engineering electronic engineering information engineeringElectronic engineeringCoherent statesPhotonicsbusiness
researchProduct

On-chip frequency combs and telecommunications signal processing meet quantum optics

2018

Entangled optical quantum states are essential towards solving questions in fundamental physics and are at the heart of applications in quantum information science. For advancing the research and development of quantum technologies, practical access to the generation and manipulation of photon states carrying significant quantum resources is required. Recently, integrated photonics has become a leading platform for the compact and cost-efficient generation and processing of optical quantum states. Despite significant advances, most on-chip nonclassical light sources are still limited to basic bi-photon systems formed by two-dimensional states (i.e., qubits). An interesting approach bearing …

Quantum opticsentangled photonComputer sciencebusiness.industryquantum opticElectronic Optical and Magnetic MaterialSettore ING-INF/02 - Campi Elettromagnetici01 natural sciencesElectronic Optical and Magnetic Materials010309 opticsQuantum technologyQC350Coherent controlQuantum stateQubitnonlinear optic0103 physical sciencesNonclassical lightElectrical and Electronic EngineeringPhotonics010306 general physicsbusinessQuantum information scienceTelecommunications
researchProduct