Search results for "cannabinoid"

showing 10 items of 323 documents

Simultaneous Inhibition of Peripheral CB1R and iNOS Mitigates Obesity-Related Dyslipidemia Through Distinct Mechanisms.

2020

Diabetic dyslipidemia, characterized by increased plasma triglycerides and decreased HDL cholesterol levels, is a major factor contributing to nonalcoholic steatohepatitis and cardiovascular risk in type 2 diabetes. Activation of the cannabinoid-1 receptor (CB1R) and activation of inducible nitric oxide synthase (iNOS) are associated with nonalcoholic steatohepatitis progression. Here, we tested whether dual-targeting inhibition of hepatic CB1R and iNOS improves diabetic dyslipidemia in mice with diet-induced obesity (DIO mice). DIO mice were treated for 14 days with (S)-MRI-1867, a peripherally restricted hybrid inhibitor of CB1R and iNOS. (R)-MRI-1867, the CB1R-inactive stereoisomer that …

0301 basic medicineMaleVery low-density lipoproteinEndocrinology Diabetes and MetabolismNitric Oxide Synthase Type II[SDV.BC.IC] Life Sciences [q-bio]/Cellular Biology/Cell Behavior [q-bio.CB][SDV.BBM.BM] Life Sciences [q-bio]/Biochemistry Molecular Biology/Molecular biologyMice0302 clinical medicineReceptor Cannabinoid CB1[SDV.BC.IC]Life Sciences [q-bio]/Cellular Biology/Cell Behavior [q-bio.CB]Receptor[SDV.BBM.BC] Life Sciences [q-bio]/Biochemistry Molecular Biology/Biochemistry [q-bio.BM]Cells Cultured[SDV.MHEP.EM] Life Sciences [q-bio]/Human health and pathology/Endocrinology and metabolismbiology[SDV.MHEP.EM]Life Sciences [q-bio]/Human health and pathology/Endocrinology and metabolism[SDV.BBM.BC]Life Sciences [q-bio]/Biochemistry Molecular Biology/Biomolecules [q-bio.BM]Nitric oxide synthaseLiver[SDV.SP.PHARMA] Life Sciences [q-bio]/Pharmaceutical sciences/PharmacologyKexinlipids (amino acids peptides and proteins)medicine.medical_specialty[SDV.OT]Life Sciences [q-bio]/Other [q-bio.OT]LipoproteinsImmunoblotting030209 endocrinology & metabolismReal-Time Polymerase Chain Reaction03 medical and health sciencesInternal medicineCommentariesInternal MedicinemedicineAnimalsObesity[SDV.BBM.BC]Life Sciences [q-bio]/Biochemistry Molecular Biology/Biochemistry [q-bio.BM]Dyslipidemiasbusiness.industry[SDV.OT] Life Sciences [q-bio]/Other [q-bio.OT]PCSK9nutritional and metabolic diseases[SDV.MHEP.HEG]Life Sciences [q-bio]/Human health and pathology/Hépatology and Gastroenterology[SDV.BBM.BM]Life Sciences [q-bio]/Biochemistry Molecular Biology/Molecular biologymedicine.diseaseLipid Metabolism[SDV.MHEP.HEG] Life Sciences [q-bio]/Human health and pathology/Hépatology and GastroenterologyMice Inbred C57BL030104 developmental biologyEndocrinologyGlucoseLDL receptorbiology.proteinHepatocytes[SDV.SP.PHARMA]Life Sciences [q-bio]/Pharmaceutical sciences/PharmacologySteatosisbusinessDyslipidemia
researchProduct

Adipocyte cannabinoid receptor CB1 regulates energy homeostasis and alternatively activated macrophages.

2017

Dysregulated adipocyte physiology leads to imbalanced energy storage, obesity, and associated diseases, imposing a costly burden on current health care. Cannabinoid receptor type-1 (CB1) plays a crucial role in controlling energy metabolism through central and peripheral mechanisms. In this work, adipocyte-specific inducible deletion of the CB1 gene (Ati-CB1- KO) was sufficient to protect adult mice from diet-induced obesity and associated metabolic alterations and to reverse the phenotype in already obese mice. Compared with controls, Ati-CB1-KO mice showed decreased body weight, reduced total adiposity, improved insulin sensitivity, enhanced energy expenditure, and fat depot-specific cell…

0301 basic medicineMalemedicine.medical_specialtyCannabinoid receptorMacrophageAdipose Tissue WhiteAdipose tissueEnergy homeostasisMice03 medical and health scienceschemistry.chemical_compound0302 clinical medicineReceptor Cannabinoid CB1Internal medicineAdipocyteBrown adipose tissueHomeostasiCannabinoid receptor type 2medicineAdipocytesAnimalsHomeostasisObesityCannabisMice KnockoutAdipocyteAnimalMedicine (all)MacrophagesBody WeightGeneral MedicineMacrophage ActivationEndocannabinoid systemMice Inbred C57BL030104 developmental biologyEndocrinologymedicine.anatomical_structurechemistryOrgan SpecificityCommentaryEnergy IntakeEnergy MetabolismTranscriptome030217 neurology & neurosurgeryHomeostasisResearch ArticleThe Journal of clinical investigation
researchProduct

Overactivation of the endocannabinoid system alters the antilipolytic action of insulin in mouse adipose tissue.

2017

Evidence has accumulated that obesity-related metabolic dysregulation is associated with overactivation of the endocannabinoid system (ECS), which involves cannabinoid receptor 1 (CB1R), in peripheral tissues, including adipose tissue (AT). The functional consequences of CB1R activation on AT metabolism remain unclear. Since excess fat mobilization is considered an important primary event contributing to the onset of insulin resistance, we combined in vivo and in vitro experiments to investigate whether activation of ECS could alter the lipolytic rate. For this purpose, the appearance of plasma glycerol was measured in wild-type and CB1R−/− mice after acute anandamide administration or inh…

0301 basic medicineMalemedicine.medical_specialtyPhysiologyEndocrinology Diabetes and Metabolismmedicine.medical_treatmentAdipose tissue030209 endocrinology & metabolismBiologyFatty Acids NonesterifiedCANNABINOID RECEPTOR 103 medical and health scienceschemistry.chemical_compoundMice0302 clinical medicineInsulin resistanceDownregulation and upregulationReceptor Cannabinoid CB1Physiology (medical)Internal medicineinsulin resistancemedicineLipolysisAnimalsInsulinendocannabinoid systemInsulinHydrolysis[ SDV.MHEP.EM ] Life Sciences [q-bio]/Human health and pathology/Endocrinology and metabolismmedicine.diseaseEndocannabinoid systemUp-RegulationJZL195Mice Inbred C57BLcannabinoid receptor 1030104 developmental biologyEndocrinologychemistryAdipose TissuelipolysisJZL195Endocannabinoids
researchProduct

Age-related regulation of bone formation by the sympathetic cannabinoid CB1 receptor.

2017

The endocannabinoid (eCB) system, including its receptors, ligands, and their metabolizing enzymes, plays an important role in bone physiology. Skeletal cannabinoid type 1 (CB1) receptor signaling transmits retrograde signals that restrain norepinephrine (NE) release, thus transiently stimulating bone formation following an acute challenge, suggesting a feedback circuit between sympathetic nerve terminals and osteoblasts. To assess the effect of chronic in vivo occurrence of this circuit, we characterized the skeletal phenotype of mice with a conditional deletion of the CB1 receptor in adrenergic/noradrenergic cells, including sympathetic nerves. Whereas the deletion of the CB1 receptor did…

0301 basic medicineMalemedicine.medical_specialtySympathetic nervous systemAgingHistologyCannabinoid receptorSympathetic Nervous SystemPhysiologyEndocrinology Diabetes and Metabolismmedicine.medical_treatmentDopamine beta-HydroxylaseBone resorptionBone remodeling03 medical and health sciencesNorepinephrineNorepinephrineReceptor Cannabinoid CB1OsteogenesisInternal medicinemedicineAnimalsNeuropeptide YBone ResorptionReceptorMice KnockoutChemistryEndocannabinoid systemMice Inbred C57BL030104 developmental biologymedicine.anatomical_structureEndocrinologyCannabinoidReceptors Adrenergic beta-2Gene Deletionmedicine.drugEndocannabinoidsBone
researchProduct

Hemisphere-dependent endocannabinoid system activity in prefrontal cortex and hippocampus of the Flinders Sensitive Line rodent model of depression

2019

Altered endocannabinoid (eCB) signaling is suggested as an important contributor to the pathophysiology of depression. To further elucidate this, we conducted a study using a genetic rat model of depression, the Flinders Sensitive Line (FSL), and their controls, the Flinders Resistant Line (FRL) rats. Plasma, right and left prefrontal cortex, and hippocampus were isolated from FSL and FRL rats. We analyzed each region for the eCB anandamide (AEA) and 2-arachidonoylglycerol (2-AG) levels by liquid chromatography/multiple reaction monitoring (LC/MRM), mRNA and protein levels of the cannabinoid type 1 receptor (CB1R), fatty acid amide hydrolase (FAAH) and monoacyl glycerol lipase (MAGL) by rea…

0301 basic medicineMalemedicine.medical_specialtymedicine.medical_treatmentHippocampusPrefrontal CortexHippocampusPrefrontal cortex03 medical and health sciencesCellular and Molecular Neurosciencechemistry.chemical_compound0302 clinical medicineSpecies SpecificityFatty acid amide hydrolaseInternal medicinemedicineAnimalsReceptorPrefrontal cortexCerebrumEndocannabinoidFlinders sensitive lineChemistryDepressionCell BiologyAnandamideEndocannabinoid systemRatsMonoacylglycerol lipase030104 developmental biologyEndocrinologylipids (amino acids peptides and proteins)CannabinoidRats Transgenic030217 neurology & neurosurgeryEndocannabinoids
researchProduct

Discovery and characterization of two novel CB1 receptor splice variants with modified N-termini in mouse

2017

Numerous studies have been carried out in the mouse model, investigating the role of the CB1 cannabinoid receptor. However, mouse CB1 (mCB1) receptor differs from human CB1 (hCB1) receptor in 13 amino acid residues. Two splice variants, hCB1a and hCB1b, diverging in their amino-termini, have been reported to be unique for hCB1 and, via different signaling properties, contribute to CB1 receptor physiology and pathophysiology. We hypothesized that splice variants also exist for the mCB1 receptor and have different signaling properties. On murine hippocampal cDNA, we identified two novel mCB1 receptor splice variants generated by splicing of introns with 117 bp and 186 bp in the N-terminal dom…

0301 basic medicineMorpholinesRNA SplicingBiologyNaphthalenesBiochemistryHippocampusArticle5-HT7 receptor03 medical and health sciencesCellular and Molecular Neuroscience0302 clinical medicineReceptor Cannabinoid CB1Cannabinoid receptor type 2Enzyme-linked receptorAnimalsHumanssplice5-HT5A receptorRNA MessengerReceptorMice KnockoutNeuronsMolecular biologyBenzoxazinesRetinoic acid receptorAlternative Splicing030104 developmental biologyHEK293 CellsInterleukin-21 receptor030217 neurology & neurosurgeryEndocannabinoidsSignal Transduction
researchProduct

Differential glutamatergic and GABAergic contributions to the tetrad effects of Δ9-tetrahydrocannabinol revealed by cell-type-specific reconstitution…

2020

Δ9-tetrahydrocannabinol (THC), the major psychoactive ingredient of Cannabis sativa, exerts its actions through the endocannabinoid system by stimulation of the cannabinoid type 1 (CB1) receptor. The widespread distribution of this receptor in different neuronal cell types and the plethora of functions that is modulated by the endocannabinoid system explain the versatility of the effects of THC. However, the cell types involved in the different THC effects are still not fully known. Conditional CB1 receptor knock-out mice were previously used to identify CB1 receptor subpopulations that are "necessary" for the tetrad effects of a high dose of THC: hypothermia, hypolocomotion, catalepsy and …

0301 basic medicinePharmacologyCannabinoid receptormusculoskeletal neural and ocular physiologymedicine.medical_treatmentGlutamate receptorBiologyEndocannabinoid system03 medical and health sciencesCellular and Molecular NeuroscienceGlutamatergic030104 developmental biology0302 clinical medicinenervous systemmental disordersForebrainmedicineGABAergiclipids (amino acids peptides and proteins)CannabinoidReceptorNeurosciencepsychological phenomena and processes030217 neurology & neurosurgeryNeuropharmacology
researchProduct

Paracetamol – An old drug with new mechanisms of action

2020

Paracetamol (acetaminophen) is the most commonly used over-the-counter (OTC) drug in the world. Despite its popularity and use for many years, the safety of its application and its mechanism of action are still unclear. Currently, it is believed that paracetamol is a multidirectional drug and at least several metabolic pathways are involved in its analgesic and antipyretic action. The mechanism of paracetamol action consists in inhibition of cyclooxygenases (COX-1, COX-2, and COX-3) and involvement in the endocannabinoid system and serotonergic pathways. Additionally, paracetamol influences transient receptor potential (TRP) channels and voltage-gated Kv7 potassium channels and inhibits T-t…

0301 basic medicinePharmacologyDrugPhysiologybusiness.industrymedia_common.quotation_subjectdigestive oral and skin physiologyAnalgesicPharmacologySerotonergicEndocannabinoid systemAcetaminophen03 medical and health sciencesTransient receptor potential channel030104 developmental biology0302 clinical medicineMechanism of actionCOX-3030220 oncology & carcinogenesisPhysiology (medical)medicinemedicine.symptombusinessmedia_commonmedicine.drugClinical and Experimental Pharmacology and Physiology
researchProduct

Developmental programming of somatic growth, behavior and endocannabinoid metabolism by variation of early postnatal nutrition in a cross-fostering m…

2017

Background Nutrient deprivation during early development has been associated with the predisposition to metabolic disorders in adulthood. Considering its interaction with metabolism, appetite and behavior, the endocannabinoid (eCB) system represents a promising target of developmental programming. Methods By cross-fostering and variation of litter size, early postnatal nutrition of CB6F1-hybrid mice was controlled during the lactation period (3, 6, or 10 pups/mother). After weaning and redistribution at P21, all pups received standard chow ad libitum. Gene expression analyses (liver, visceral fat, hypothalamus) were performed at P50, eCB concentrations were determined in liver and visceral …

0301 basic medicinePhysiologyGene Expressionlcsh:MedicineAdipose tissueBiochemistryFatsMiceOvernutritionArcuate NucleusPregnancyLactationMedicine and Health SciencesCross-fosteringInsulin-Like Growth Factor Ilcsh:Sciencemedia_commonMultidisciplinaryAnimal BehaviorBrainNeurochemistryLipidsmedicine.anatomical_structureAdipose TissuePhysiological ParametersLiverAnimal SocialityFemaleAnatomyNeurochemicalsResearch Articlemedicine.medical_specialtymedia_common.quotation_subjectHypothalamusNutritional StatusIntra-Abdominal FatBiology03 medical and health sciencesInternal medicineGeneticsmedicineAnimalsHumansWeaningObesityNutritionBehaviorBody Weightlcsh:RBiology and Life SciencesAppetitemedicine.diseaseObesityDisease Models AnimalBiological Tissue030104 developmental biologyEndocrinologyDevelopmental plasticitylcsh:QZoologyBody mass indexEndocannabinoidsNeurosciencePLOS ONE
researchProduct

Chemical probes to potently and selectively inhibit endocannabinoid cellular reuptake

2017

The extracellular effects of the endocannabinoids anandamide and 2-arachidonoyl glycerol are terminated by enzymatic hydrolysis after crossing cellular membranes by facilitated diffusion. The lack of potent and selective inhibitors for endocannabinoid transport has prevented the molecular characterization of this process, thus hindering its biochemical investigation and pharmacological exploitation. Here, we report the design, chemical synthesis, and biological profiling of natural product-derived N-substituted 2,4-dodecadienamides as a selective endocannabinoid uptake inhibitor. The highly potent (IC50 = 10 nM) inhibitor N-(3,4-dimethoxyphenyl)ethyl amide (WOBE437) exerted pronounced canna…

0301 basic medicinePolyunsaturated Alkamidesmedicine.drug_classmedicine.medical_treatmentAnti-Inflammatory AgentsArachidonic AcidsPharmacologyDepolarization-induced suppression of inhibitionAnxiolyticGlyceridesReuptakeMice03 medical and health scienceschemistry.chemical_compoundCell Line TumorExtracellularmedicineAnimalsHumansReceptors Cannabinoid610 Medicine & healthMice Inbred BALB CMultidisciplinaryHydrolysismusculoskeletal neural and ocular physiologyCell MembraneBrainBiological TransportU937 CellsAnandamideMembrane transportEndocannabinoid systemMice Inbred C57BL030104 developmental biologynervous systemPNAS PlusAnti-Anxiety AgentschemistryBiophysics570 Life sciences; biologylipids (amino acids peptides and proteins)Cannabinoidpsychological phenomena and processesEndocannabinoidsProceedings of the National Academy of Sciences
researchProduct