6533b838fe1ef96bd12a50b9
RESEARCH PRODUCT
Chemical probes to potently and selectively inhibit endocannabinoid cellular reuptake
Helgi B. SchiöthKarl-heinz AltmannAndrea ChiccaJürg GertschRoch-philippe CharlesJuan Manuel Viveros-paredesVanessa PetrucciRuben BartholomäusSimon NicolussiBeat LutzMichael SoeberdtInes Reynoso-morenoInes Reynoso-morenoAlejandro Aparisi ReyChristoph AbelsMartina BlunderMartina BlunderMarianela Dalghi Genssubject
0301 basic medicinePolyunsaturated Alkamidesmedicine.drug_classmedicine.medical_treatmentAnti-Inflammatory AgentsArachidonic AcidsPharmacologyDepolarization-induced suppression of inhibitionAnxiolyticGlyceridesReuptakeMice03 medical and health scienceschemistry.chemical_compoundCell Line TumorExtracellularmedicineAnimalsHumansReceptors Cannabinoid610 Medicine & healthMice Inbred BALB CMultidisciplinaryHydrolysismusculoskeletal neural and ocular physiologyCell MembraneBrainBiological TransportU937 CellsAnandamideMembrane transportEndocannabinoid systemMice Inbred C57BL030104 developmental biologynervous systemPNAS PlusAnti-Anxiety AgentschemistryBiophysics570 Life sciences; biologylipids (amino acids peptides and proteins)Cannabinoidpsychological phenomena and processesEndocannabinoidsdescription
The extracellular effects of the endocannabinoids anandamide and 2-arachidonoyl glycerol are terminated by enzymatic hydrolysis after crossing cellular membranes by facilitated diffusion. The lack of potent and selective inhibitors for endocannabinoid transport has prevented the molecular characterization of this process, thus hindering its biochemical investigation and pharmacological exploitation. Here, we report the design, chemical synthesis, and biological profiling of natural product-derived N-substituted 2,4-dodecadienamides as a selective endocannabinoid uptake inhibitor. The highly potent (IC50 = 10 nM) inhibitor N-(3,4-dimethoxyphenyl)ethyl amide (WOBE437) exerted pronounced cannabinoid receptor-dependent anxiolytic, antiinflammatory, and analgesic effects in mice by increasing endocannabinoid levels. A tailored WOBE437-derived diazirine-containing photoaffinity probe (RX-055) irreversibly blocked membrane transport of both endocannabinoids, providing mechanistic insights into this complex process. Moreover, RX-055 exerted site-specific anxiolytic effects on in situ photoactivation in the brain. This study describes suitable inhibitors to target endocannabinoid membrane trafficking and uncovers an alternative endocannabinoid pharmacology.
year | journal | country | edition | language |
---|---|---|---|---|
2017-06-05 | Proceedings of the National Academy of Sciences |