Search results for "capture"

showing 10 items of 463 documents

First operation of the KATRIN experiment with tritium

2020

AbstractThe determination of the neutrino mass is one of the major challenges in astroparticle physics today. Direct neutrino mass experiments, based solely on the kinematics of $$\upbeta $$β-decay, provide a largely model-independent probe to the neutrino mass scale. The Karlsruhe Tritium Neutrino (KATRIN) experiment is designed to directly measure the effective electron antineutrino mass with a sensitivity of $$0.2\hbox { eV}$$0.2eV ($$90\%$$90% CL). In this work we report on the first operation of KATRIN with tritium which took place in 2018. During this commissioning phase of the tritium circulation system, excellent agreement of the theoretical prediction with the recorded spectra was …

Physics - Instrumentation and DetectorsCosmology and Nongalactic Astrophysics (astro-ph.CO)Physics and Astronomy (miscellaneous)Physics::Instrumentation and DetectorsFOS: Physical scienceslcsh:Astrophysics[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]TritiumKATRIN01 natural sciencesantineutrino/e: massHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)lcsh:QB460-4660103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]lcsh:Nuclear and particle physics. Atomic energy. RadioactivityMass scaleddc:530Electron Capture[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Nuclear Experiment (nucl-ex)010306 general physicsEngineering (miscellaneous)Nuclear ExperimentAstroparticle physicsPhysics010308 nuclear & particles physicstritiumPhysicsQuímicaInstrumentation and Detectors (physics.ins-det)sensitivityddc:lcsh:QC770-798TritiumHigh Energy Physics::ExperimentNeutrinoPräzisionsexperimente - Abteilung BlaumNeutrino Mass[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Electron neutrinoperformanceKATRINAstrophysics - Cosmology and Nongalactic Astrophysicsexperimental results
researchProduct

Gamma Ray Spectra from Thermal Neutron Capture on Gadolinium-155 and Natural Gadolinium

2019

Natural gadolinium is widely used for its excellent thermal neutron capture cross section, because of its two major isotopes: $^{\rm 155}$Gd and $^{\rm 157}$Gd. We measured the $\gamma$-ray spectra produced from the thermal neutron capture on targets comprising a natural gadolinium film and enriched $^{\rm 155}$Gd (in Gd$_{2}$O$_{3}$ powder) in the energy range from 0.11 MeV to 8.0 MeV, using the ANNRI germanium spectrometer at MLF, J-PARC. The freshly analysed data of the $^{\rm 155}$Gd(n, $\gamma$) reaction are used to improve our previously developed model (ANNRI-Gd model) for the $^{\rm 157}$Gd(n, $\gamma$) reaction, and its performance confirmed with the independent data from the $^{\r…

Physics - Instrumentation and DetectorsGadoliniumMonte Carlo methodAnalytical chemistryenergy spectrumGeneral Physics and Astronomychemistry.chemical_elementFOS: Physical sciencesGermanium[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]n: thermal7. Clean energy01 natural sciencesSpectral lineHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)F20 Instrumentation and technique0103 physical sciencesH43 Software architectures[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex][PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Nuclear Experiment (nucl-ex)n: capture010306 general physicsNuclear ExperimentMonte CarloPhysicsD21 Models of nuclear reactionsIsotopeSpectrometer010308 nuclear & particles physicsJ-PARC LabGamma rayInstrumentation and Detectors (physics.ins-det)Gadolinium neutron capture gamma ray cascadeNeutron temperature3. Good healthparticle: interactionH20 Instrumentation for underground experimentsgermaniumF22 Neutrinos from supernova remnant and other astronomical objectsC42 Reactor experimentschemistrygamma rayC43 Underground experimentsspectrometergadoliniumperformance
researchProduct

The MORA project

2018

The MORA (Matter's Origin from the RadioActivity of trapped and oriented ions) project aims at measuring with unprecedented precision the D correlation in the nuclear beta decay of trapped and oriented ions. The D correlation offers the possibility to search for new CP-violating interactions, complementary to searches done at the LHC and with Electric Dipole Moments. Technically, MORA uses an innovative in-trap orientation method which combines the high trapping efficiency of a transparent Paul trap with laser orientation techniques. The trapping, detection, and laser setups are under development, for first tests at the Accelerator laboratory, JYFL, in the coming years.

Physics - Instrumentation and Detectorsexperimental methodsPhysics beyond the Standard Model42.25.Janucl-ex01 natural sciences7. Clean energylaw.invention23.40.-slawPhysics::Atomic PhysicsNuclear Experiment (nucl-ex)Detectors and Experimental TechniquesNuclear Experimentphysics.ins-detPhysicsLarge Hadron Colliderion trapsOrientation (computer vision)Instrumentation and Detectors (physics.ins-det)Condensed Matter PhysicsComputer Science::Computers and SocietyAtomic and Molecular Physics and OpticsIon trapydinfysiikkaNuclear and High Energy PhysicsFOS: Physical sciencesTrapping[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]Computer Science::Digital LibrariesIonFundamental symmetriesNuclear physics0103 physical sciencesCP: violation37.10.TyNuclear Physics - Experiment[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Physical and Theoretical Chemistry010306 general physicsactivity reportion: capturenucleus: semileptonic decayCondensed Matter::Quantum Gases010308 nuclear & particles physicsBeta DecayLaserlaserDipoleefficiencycorrelationfundamental symmetries11.30.Erbeta decayIon traps
researchProduct

Direct Measurement of the Mass Difference ofHo163andDy163Solves theQ-Value Puzzle for the Neutrino Mass Determination

2015

The atomic mass difference of (163)Ho and (163)Dy has been directly measured with the Penning-trap mass spectrometer SHIPTRAP applying the novel phase-imaging ion-cyclotron-resonance technique. Our measurement has solved the long-standing problem of large discrepancies in the Q value of the electron capture in (163)Ho determined by different techniques. Our measured mass difference shifts the current Q value of 2555(16) eV evaluated in the Atomic Mass Evaluation 2012 [G. Audi et al., Chin. Phys. C 36, 1157 (2012)] by more than 7σ to 2833(30(stat))(15(sys)) eV/c(2). With the new mass difference it will be possible, e.g., to reach in the first phase of the ECHo experiment a statistical sensit…

Physics010308 nuclear & particles physicsElectron captureQ valueElectron rest massGeneral Physics and AstronomyMass spectrometry7. Clean energy01 natural sciencesBeta decayAtomic massNuclear physicsAtomic mass constant0103 physical sciencesNeutrino010306 general physicsPhysical Review Letters
researchProduct

Direct measurement of the mass difference of As72−Ge72 rules out As72 as a promising β -decay candidate to determine the neutrino mass

2021

We report the first direct determination of the ground-state to ground-state electron-capture $Q$ value for the $^{72}\mathrm{As}$ to $^{72}\mathrm{Ge}$ decay by measuring their atomic mass difference utilizing the double Penning trap mass spectrometer, JYFLTRAP. The $Q$ value was measured to be 4343.596(75) keV, which is more than a fiftyfold improvement in precision compared to the value in the most recent Atomic Mass Evaluation 2020. Furthermore, the new $Q$ value was found to be 12.4(40) keV (3.1 $\ensuremath{\sigma}$) lower. With the significant reduction of the uncertainty of the ground-state to ground-state $Q$ value combined with the level scheme of $^{72}\mathrm{Ge}$ from $\ensurem…

Physics010308 nuclear & particles physicsElectron captureSigmaPenning trapMass spectrometry01 natural sciencesAtomic mass0103 physical sciencesNeutrinoAtomic physics010306 general physicsSpectroscopyElectron neutrinoPhysical Review C
researchProduct

Neutron capture cross section measurement ofU238at the CERN n_TOF facility in the energy region from 1 eV to 700 keV

2017

The aim of this work is to provide a precise and accurate measurement of the U238(n,γ) reaction cross section in the energy region from 1 eV to 700 keV. This reaction is of fundamental importance for the design calculations of nuclear reactors, governing the behavior of the reactor core. In particular, fast reactors, which are experiencing a growing interest for their ability to burn radioactive waste, operate in the high energy region of the neutron spectrum. In this energy region most recent evaluations disagree due to inconsistencies in the existing measurements of up to 15%. In addition, the assessment of nuclear data uncertainty performed for innovative reactor systems shows that the u…

Physics010308 nuclear & particles physicsGamma rayNuclear dataScintillator7. Clean energy01 natural sciencesResonance (particle physics)Nuclear physicsNeutron captureNuclear reactor core0103 physical sciencesNeutron cross sectionNeutron010306 general physicsPhysical Review C
researchProduct

2021

Comparative analyses of the nuclear matrix elements (NMEs) related to the 0νβ+β+ decay of 106Cd to the ground state of 106Pd and the ordinary muon capture (OMC) in 106Cd are performed. This is the first time the OMC NMEs are studied for a nucleus decaying via positron-emitting/electron-capture modes of double beta decay. All the present calculations are based on the proton-neutron quasiparticle random-phase approximation with large no-core single-particle bases and realistic two-nucleon interactions. The effect of the particle-particle interaction parameter gpp of pnQRPA on the NMEs is discussed. In the case of the OMC, the effect of different bound-muon wave functions is studied.

Physics010308 nuclear & particles physicsMaterials Science (miscellaneous)BiophysicsGeneral Physics and AstronomyFlory–Huggins solution theoryNuclear matrix01 natural sciencesMuon captureNuclear physicsmedicine.anatomical_structureDouble beta decay0103 physical sciencesmedicineQuasiparticlePhysical and Theoretical Chemistry010306 general physicsWave functionGround stateNucleusMathematical PhysicsFrontiers in Physics
researchProduct

Characterization and First Test of an i-TED Prototype at CERN n_TOF

2018

International audience; Neutron capture cross section measurements are of fundamental importance for the study of the slow process of neutron capture, so called s-process. This mechanism is responsible for the formation of most elements heavier than iron in the Universe. To this aim, installations and detectors have been developed, as total energy radiation C$_{6}$ D$_{6}$ detectors. However, these detectors can not distinguish between true capture gamma rays from the sample under study and neutron induced gamma rays produced in the surroundings of the setup. To improve this situation, we propose (Domingo Pardo in Nucl Instr Meth Phys Res A 825:78–86, 2016, [1]) the use of the Compton princ…

PhysicsAstrophysics::High Energy Astrophysical PhenomenaDetectorGamma rayi-TED n_TOF characterizationNeutron radiationRadiation[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]030218 nuclear medicine & medical imagingNuclear physics03 medical and health sciencesNeutron capture0302 clinical medicineNeutron cross sectionNeutronGamma spectroscopy[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]iTED n_TOF neutron
researchProduct

Primordial Heavy Element Production

1995

A number of possible mechanisms have been suggested to generate density in-homogeneities in the early Universe which could survive until the onset of primordial nucleosynthesis (Malaney and Mathews 1993). In this work we are not concerned with how the inhomogeneities were generated but we want to focus on the effect of such inhomogeneities on primordial nucleosynthesis. One of the proposed signatures of inhomogeneity, the synthesis of very heavy elements by neutron capture, was analyzed for varying baryon to photon ratios n and length scales L. A detailed discussion is published in (Rauscher et al. 1994b). Preliminary results can be found in (Thielemann et al. 1991; Rauscher et al. 1994a).

PhysicsBaryonNeutron capturePhotonBig Bang nucleosynthesismedia_common.quotation_subjectAstrophysicsHeavy elementUniversemedia_common
researchProduct

Comparison of electromagnetic and nuclear dissociation of Ne-17

2018

8 pags., 10 figs., 3 tabs.

PhysicsCOLLISIONSInternal energy010308 nuclear & particles physics01 natural sciences7. Clean energySTATEDissociation (chemistry)CoincidenceCAPTUREReaction ratemedicine.anatomical_structureFragmentation (mass spectrometry)0103 physical sciencesmedicineHaloAtomic physics010306 general physicsGround stateDECAYNucleus
researchProduct