Search results for "carathéodory"

showing 4 items of 4 documents

Semilinear Robin problems driven by the Laplacian plus an indefinite potential

2019

We study a semilinear Robin problem driven by the Laplacian plus an indefinite potential. We consider the case where the reaction term f is a Carathéodory function exhibiting linear growth near ±∞. So, we establish the existence of at least two solutions, by using the Lyapunov-Schmidt reduction method together with variational tools.

Numerical AnalysisApplied Mathematics010102 general mathematicsFunction (mathematics)Mathematics::Spectral Theory01 natural sciencesTerm (time)010101 applied mathematicsComputational MathematicsSettore MAT/05 - Analisi MatematicaApplied mathematicsLyapunov-Schmidt reduction methodindefinite potential0101 mathematicsCarathéodory reactionLinear growthSemilinear Robin problemLaplace operatorAnalysisMathematicsComplex Variables and Elliptic Equations
researchProduct

The behavior of solutions of a parametric weighted (p, q)-laplacian equation

2021

<abstract><p>We study the behavior of solutions for the parametric equation</p> <p><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ -\Delta_{p}^{a_1} u(z)-\Delta_{q}^{a_2} u(z) = \lambda |u(z)|^{q-2} u(z)+f(z,u(z)) \quad \mbox{in } \Omega,\, \lambda >0, $\end{document} </tex-math></disp-formula></p> <p>under Dirichlet condition, where $ \Omega \subseteq \mathbb{R}^N $ is a bounded domain with a $ C^2 $-boundary $ \partial \Omega $, $ a_1, a_2 \in L^\infty(\Omega) $ with $ a_1(z), a_2(z) > 0 $ for a.a. $ z \in \Omega $, $ p, q \in (1, \infty) $ and $ \Delta_{p}^{a_1}, \Delta_{q}^{a_2} $ are weighted …

Positive and negative solutionsGeneral MathematicsNodal solutionsLambdaOmegaCombinatoricssymbols.namesakeMathematics - Analysis of PDEsSettore MAT/05 - Analisi MatematicaQA1-939FOS: Mathematicspositive and negative solutionsResonant Carathéodory functionudc:517.956Physics35J20 35J60Spectrum (functional analysis)weighted (pWeighted (p q)-LaplacianDifferential operatorresonant Carathéodory functionweighted (pq)-LaplacianDirichlet boundary conditionBounded functionq)-laplacianDomain (ring theory)symbolsnodal solutionsParametric power termLaplace operatorMathematicsparametric power termAnalysis of PDEs (math.AP)
researchProduct

Fine properties of functions with bounded variation in Carnot-Carathéodory spaces

2019

Abstract We study properties of functions with bounded variation in Carnot-Caratheodory spaces. We prove their almost everywhere approximate differentiability and we examine their approximate discontinuity set and the decomposition of their distributional derivatives. Under an additional assumption on the space, called property R , we show that almost all approximate discontinuities are of jump type and we study a representation formula for the jump part of the derivative.

Pure mathematicsApplied Mathematics010102 general mathematicsvariaatiolaskentaCarnot-Carathéodory spaces; Functions with bounded variationType (model theory)Classification of discontinuitiesSpace (mathematics)01 natural sciencesdifferentiaaligeometria010101 applied mathematicsDiscontinuity (linguistics)Functions with bounded variationBounded variationCarnot-Carathéodory spacesJumpAlmost everywheremittateoriaDifferentiable function0101 mathematicsfunctions with bounded variationfunktiotAnalysisMathematicsJournal of Mathematical Analysis and Applications
researchProduct

Quasiconformal Jordan Domains

2020

We extend the classical Carath\'eodory extension theorem to quasiconformal Jordan domains $( Y, d_{Y} )$. We say that a metric space $( Y, d_{Y} )$ is a quasiconformal Jordan domain if the completion $\overline{Y}$ of $( Y, d_{Y} )$ has finite Hausdorff $2$-measure, the boundary $\partial Y = \overline{Y} \setminus Y$ is homeomorphic to $\mathbb{S}^{1}$, and there exists a homeomorphism $\phi \colon \mathbb{D} \rightarrow ( Y, d_{Y} )$ that is quasiconformal in the geometric sense. We show that $\phi$ has a continuous, monotone, and surjective extension $\Phi \colon \overline{ \mathbb{D} } \rightarrow \overline{ Y }$. This result is best possible in this generality. In addition, we find a n…

primary 30l10QA299.6-433Mathematics::Dynamical SystemsMathematics - Complex VariablesMathematics::Complex VariablesHigh Energy Physics::PhenomenologycarathéodoryPrimary 30L10 Secondary 30C65 28A75 51F99 52A38Mathematics::General Topologymetric surfacebeurling–ahlforsMetric Geometry (math.MG)quasiconformalsecondary 30c65 28a75 51f99Carathéodorymetriset avaruudetfunktioteoriaPhysics::Fluid DynamicsMathematics - Metric GeometryBeurling–AhlforsFOS: MathematicsmittateoriaComplex Variables (math.CV)AnalysisAnalysis and Geometry in Metric Spaces
researchProduct