Search results for "catalysis"

showing 10 items of 5944 documents

The Amino-Terminal Domain of GRK5 Inhibits Cardiac Hypertrophy through the Regulation of Calcium-Calmodulin Dependent Transcription Factors.

2018

We have recently demonstrated that the amino-terminal domain of G protein coupled receptor kinase (GRK) type 5, (GRK5-NT) inhibits NFκB activity in cardiac cells leading to a significant amelioration of LVH. Since GRK5-NT is known to bind calmodulin, this study aimed to evaluate the functional role of GRK5-NT in the regulation of calcium-calmodulin-dependent transcription factors. We found that the overexpression of GRK5-NT in cardiomyoblasts significantly reduced the activation and the nuclear translocation of NFAT and its cofactor GATA-4 in response to phenylephrine (PE). These results were confirmed in vivo in spontaneously hypertensive rats (SHR), in which intramyocardial adenovirus-med…

0301 basic medicineG-Protein-Coupled Receptor Kinase 5MalecalmodulinMutantWistarPlasma protein binding030204 cardiovascular system & hematologyCatalysilcsh:ChemistryPhenylephrine0302 clinical medicineRats Inbred SHRMyocytes Cardiaclcsh:QH301-705.5SpectroscopybiologyChemistrycardiac hypertrophyNFATComputer Science Applications1707 Computer Vision and Pattern RecognitionGeneral MedicineLeft VentricularComputer Science ApplicationsCell biologycardiac hypertrophy; transcription factors; calmodulin; GRKGRKHypertrophy Left VentricularCardiacProtein BindingInbred SHRCalmodulinCalmodulin; Cardiac hypertrophy; GRK; Transcription factors; Animals; Binding Sites; Calmodulin; Cell Line; G-Protein-Coupled Receptor Kinase 5; GATA4 Transcription Factor; Hypertrophy Left Ventricular; Male; Myocytes Cardiac; NFATC Transcription Factors; Phenylephrine; Protein Binding; Rats; Rats Inbred SHR; Rats Wistar; Catalysis; Molecular Biology; Spectroscopy; Computer Science Applications1707 Computer Vision and Pattern Recognition; Physical and Theoretical Chemistry; Organic Chemistry; Inorganic ChemistryCatalysisArticleCell LineInorganic Chemistry03 medical and health sciencesG-Protein-Coupled Receptor Kinase 5transcription factorsAnimalsPhysical and Theoretical ChemistryRats WistarTranscription factorMolecular BiologyG protein-coupled receptor kinaseMyocytesBinding SitesNFATC Transcription FactorsOrganic ChemistryHypertrophyNFATC Transcription FactorsGATA4 Transcription FactorRats030104 developmental biologylcsh:Biology (General)lcsh:QD1-999biology.proteinTranscription factorInternational journal of molecular sciences
researchProduct

2019

The effects of ionotropic γ-aminobutyric acid receptor (GABA-A, GABAA) activation depends critically on the Cl−-gradient across neuronal membranes. Previous studies demonstrated that the intracellular Cl−-concentration ([Cl−]i) is not stable but shows a considerable amount of activity-dependent plasticity. To characterize how membrane properties and different molecules that are directly or indirectly involved in GABAergic synaptic transmission affect GABA-induced [Cl−]i changes, we performed compartmental modeling in the NEURON environment. These simulations demonstrate that GABA-induced [Cl−]i changes decrease at higher membrane resistance, revealing a sigmoidal dependency between both par…

0301 basic medicineGABAA receptorChemistryIntracellular pHOrganic ChemistryGeneral MedicineNeurotransmissionCatalysisComputer Science ApplicationsInorganic Chemistry03 medical and health sciences030104 developmental biology0302 clinical medicineMembranenervous systemGiant depolarizing potentialsBiophysicsPhysical and Theoretical ChemistryReceptorMolecular Biology030217 neurology & neurosurgerySpectroscopyIntracellularIonotropic effectInternational Journal of Molecular Sciences
researchProduct

The Multifaced Role of STAT3 in Cancer and Its Implication for Anticancer Therapy

2021

Signal transducer and activator of transcription (STAT) 3 is one of the most complex regulators of transcription. Constitutive activation of STAT3 has been reported in many types of tumors and depends on mechanisms such as hyperactivation of receptors for pro-oncogenic cytokines and growth factors, loss of negative regulation, and excessive cytokine stimulation. In contrast, somatic STAT3 mutations are less frequent in cancer. Several oncogenic targets of STAT3 have been recently identified such as c-myc, c-Jun, PLK-1, Pim1/2, Bcl-2, VEGF, bFGF, and Cten, and inhibitors of STAT3 have been developed for cancer prevention and treatment. However, despite the oncogenic role of STAT3 having been…

0301 basic medicineGene isoformSTAT3 Transcription FactorCarcinogenesistumor suppressorPIM1Antineoplastic AgentsReviewBiologyCatalysisstatInorganic ChemistrySTAT3lcsh:Chemistry03 medical and health sciences0302 clinical medicineNeoplasmsDrug DiscoverymedicineAnimalsHumanscancerNeoplasm InvasivenessMolecular Targeted TherapyPhysical and Theoretical ChemistrySTAT3Molecular BiologyTranscription factorlcsh:QH301-705.5SpectroscopyNeovascularization PathologicOrganic ChemistryAlternative splicingtumor promoterCancerGeneral Medicinemedicine.diseaseComputer Science ApplicationsGene Expression Regulation Neoplastic030104 developmental biologylcsh:Biology (General)lcsh:QD1-999030220 oncology & carcinogenesisCancer researchbiology.proteinSTAT proteinInternational Journal of Molecular Sciences
researchProduct

Singlet Oxygen Attack on Guanine: Reactivity and Structural Signature within the B-DNA Helix

2016

International audience; Oxidatively generated DNA lesions are numerous and versatile, and have been the subject of intensive research since the discovery of 8-oxoguanine in 1984. Even for this prototypical lesion, the precise mechanism of formation remains elusive due to the inherent difficulties in characterizing high-energy intermediates. We have probed the stability of the guanine endoperoxide in B-DNA as a key intermediate and determined a unique activation free energy of around 6 kcal mol−1 for the formation of the first C−O covalent bond upon the attack of singlet molecular oxygen (1O2) on the central guanine of a solvated 13 base-pair poly(dG-dC), described by means of quantum mechan…

0301 basic medicineGuanineBase pairGuanineMolecular Dynamics Simulation010402 general chemistryPhotochemistry01 natural sciencesCatalysis03 medical and health sciencesMolecular dynamicschemistry.chemical_compoundPolydeoxyribonucleotidesReactivity (chemistry)Base PairingSinglet OxygenChemistrySinglet oxygenOrganic ChemistrySolvationGeneral Chemistry0104 chemical sciences030104 developmental biologyCovalent bondHelixDNA B-FormOxidation-Reduction[CHIM.RADIO]Chemical Sciences/Radiochemistry
researchProduct

In silico identification of small molecules as new cdc25 inhibitors through the correlation between chemosensitivity and protein expression pattern

2021

The cell division cycle 25 (Cdc25) protein family plays a crucial role in controlling cell proliferation, making it an excellent target for cancer therapy. In this work, a set of small molecules were identified as Cdc25 modulators by applying a mixed ligand-structure-based approach and taking advantage of the correlation between the chemosensitivity of selected structures and the protein expression pattern of the proposed target. In the first step of the in silico protocol, a set of molecules acting as Cdc25 inhibitors were identified through a new ligand-based protocol and the evaluation of a large database of molecular structures. Subsequently, induced-fit docking (IFD) studies allowed us…

0301 basic medicineHepG2Protein familyCdc25In silicoAntiproliferative activityCell cycleLigandsCatalysisArticleInorganic Chemistrylcsh:Chemistry03 medical and health sciencesCdc250302 clinical medicineCDC2 Protein KinaseDrug DiscoveryHumanscdc25 PhosphatasesComputer SimulationMolecular Targeted TherapyPhysical and Theoretical ChemistryPhosphorylationMolecular Biologylcsh:QH301-705.5DRUDITSpectroscopyBinding SitesbiologyCell growthChemistryOrganic ChemistryGeneral MedicineHep G2 CellsCell cycleAntiproliferative activity; Cdc25; Cell cycle; DRUDIT; HepG2; Molecular dockingLigand (biochemistry)Small moleculeComputer Science Applications030104 developmental biologyBiochemistrylcsh:Biology (General)lcsh:QD1-999Docking (molecular)030220 oncology & carcinogenesisMolecular dockingbiology.proteinDrug Screening Assays Antitumor
researchProduct

Binding and neurotoxicity mitigation of toxic tau oligomers by synthetic heparin like oligosaccharides.

2018

Well-defined heparin like oligosaccharides up to decasaccharides were synthesized. It was discovered for the first time that heparin oligosaccharides, as short as tetrasaccharides, can bind with the most toxic tau species, i.e., tau oligomers with nM KD. The binding significantly reduced the cellular uptake of toxic tau oligomers and protected the cells from tau oligomer induced cytotoxicity.

0301 basic medicineHeparin likeMetals and AlloysNeurotoxicityGeneral ChemistryHeparinmedicine.diseaseOligomerCatalysisArticleSurfaces Coatings and FilmsElectronic Optical and Magnetic Materials03 medical and health scienceschemistry.chemical_compound030104 developmental biologyBiochemistrychemistrymental disordersMaterials ChemistryCeramics and CompositesmedicineCytotoxicitymedicine.drugChemical communications (Cambridge, England)
researchProduct

NANOG Plays a Hierarchical Role in the Transcription Network Regulating the Pluripotency and Plasticity of Adipose Tissue-Derived Stem Cells

2017

The stromal vascular cell fraction (SVF) of visceral and subcutaneous adipose tissue (VAT and SAT) has increasingly come into focus in stem cell research, since these compartments represent a rich source of multipotent adipose-derived stem cells (ASCs). ASCs exhibit a self-renewal potential and differentiation capacity. Our aim was to study the different expression of the embryonic stem cell markers NANOG (homeobox protein NANOG), SOX2 (SRY (sex determining region Y)-box 2) and OCT4 (octamer-binding transcription factor 4) and to evaluate if there exists a hierarchal role in this network in ASCs derived from both SAT and VAT. ASCs were isolated from SAT and VAT biopsies of 72 consenting pat…

0301 basic medicineHomeobox protein NANOGembryonic stem cell marker networkAdultMaleRex1regenerative medicineBiologyStem cell markerReal-Time Polymerase Chain ReactionCatalysisArticleSettore MED/13 - Endocrinologiaadipose derived stem cell (ASC); regenerative medicine; embryonic stem cell marker networkInorganic Chemistryadipose derived stem cell (ASC)03 medical and health sciencesSOX2HumansCD90Physical and Theoretical ChemistryMolecular BiologySpectroscopyEmbryonic Stem Cellsreproductive and urinary physiologySOXB1 Transcription FactorsOrganic ChemistryMesenchymal stem cellCell DifferentiationGeneral MedicineNanog Homeobox ProteinMiddle AgedEmbryonic stem cellMolecular biologyAdipose derived stemcell (ASC); stem cell markers Regenerative medicineComputer Science ApplicationsCell biologySettore MED/18 - Chirurgia Generale030104 developmental biologystem cell markers Regenerative medicineAdipose Tissueembryonic structuresFemaleStem cellbiological phenomena cell phenomena and immunityOctamer Transcription Factor-3Adipose derived stemcell (ASC)International Journal of Molecular Sciences; Volume 18; Issue 6; Pages: 1107
researchProduct

Role of Immunogenetics in the Outcome of HCMV Infection: Implications for Ageing

2019

The outcome of host-virus interactions is determined by a number of factors, some related to the virus, others to the host, such as environmental factors and genetic factors. Therefore, different individuals vary in their relative susceptibility to infections. Human cytomegalovirus (HCMV) is an important pathogen from a clinical point of view, as it causes significant morbidity and mortality in immunosuppressed or immunosenescent individuals, such as the transplanted patients and the elderly, respectively. It is, therefore, important to understand the mechanisms of virus infection control. In this review, we discuss recent advances in the immunobiology of HCMV-host interactions, with partic…

0301 basic medicineHuman cytomegalovirusAgingCellular immunityvirusesCytomegalovirusReviewlcsh:Chemistry0302 clinical medicineHLA AntigensGenotypeMedicineantibodieslcsh:QH301-705.5SpectroscopyimmunosenescenceImmunity CellularbiologyGeneral MedicineImmunosenescenceGMComputer Science ApplicationsKIRHLAantibodieCytomegalovirus InfectionsHost-Pathogen InteractionsAntibodyGenotypeNKCongenital cytomegalovirus infectionHuman leukocyte antigenelderlyCatalysisVirusInorganic Chemistry03 medical and health sciencesImmunogeneticsAnimalsHumansGenetic Predisposition to DiseasePhysical and Theoretical ChemistryMolecular BiologyHCMVSettore MED/04 - Patologia Generalebusiness.industryOrganic Chemistrymedicine.diseaseImmunity Humoral030104 developmental biologylcsh:Biology (General)lcsh:QD1-999Immunologybiology.proteinbusiness030215 immunology
researchProduct

Inhibition of tetraspanin functions impairs human papillomavirus and cytomegalovirus infections

2018

Tetraspanins are suggested to regulate the composition of cell membrane components and control intracellular transport, which leaves them vulnerable to utilization by pathogens such as human papillomaviruses (HPV) and cytomegaloviruses (HCMV) to facilitate host cell entry and subsequent infection. In this study, by means of cellular depletion, the cluster of differentiation (CD) tetraspanins CD9, CD63, and CD151 were found to reduce HPV16 infection in HeLa cells by 50 to 80%. Moreover, we tested recombinant proteins or peptides of specific tetraspanin domains on their effect on the most oncogenic HPV type, HPV16, and HCMV. We found that the C-terminal tails of CD63 and CD151 significantly i…

0301 basic medicineHuman cytomegalovirusMaleTelomeraseTetraspaninsviruses610 MedizinCytomegalovirusIC50virus entrylcsh:ChemistryTetraspanin610 Medical scienceshuman papillomaviruslcsh:QH301-705.5SpectroscopyHuman papillomavirus 16virus diseasesGeneral MedicineBiología y Biomedicina / BiologíaEntry into hostComputer Science ApplicationsCytomegalovirus Infectionsembryonic structuresIC<sub>50</sub>HPV16BiologyCatalysisArticleInorganic Chemistry03 medical and health sciencesInhibitory Concentration 50AntigenViral entrymedicineHumansddc:610Physical and Theoretical ChemistryHumanes PapillomavirusMolecular BiologyCluster of differentiationOrganic ChemistryVirus internalizationCytomegalie-VirusIC 50Human papillomavirus virusesmedicine.diseaseVirologyHaCaT030104 developmental biologytetraspaninlcsh:Biology (General)lcsh:QD1-999human cytomegalovirusPeptidesDDC 610 / Medicine &amp; healthblocking peptideHeLa Cells
researchProduct

Feedback Regulation of Syk by Protein Kinase C in Human Platelets

2019

The spleen tyrosine kinase (Syk) is essential for immunoreceptor tyrosine-based activation motif (ITAM)-dependent platelet activation, and it is stimulated by Src-family kinase (SFK)-/Syk-mediated phosphorylation of Y352 (interdomain-B) and Y525/526 (kinase domain). Additional sites for Syk phosphorylation and protein interactions are known but remain elusive. Since Syk S297 phosphorylation (interdomain-B) was detected in platelets, we hypothesized that this phosphorylation site regulates Syk activity via protein kinase C (PKC)-and cyclic adenosine monophosphate (cAMP)-dependent pathways. ADP, the GPVI-agonist convulxin, and the GPIb&alpha

0301 basic medicineIndolesPlatelet AggregationSyk030204 cardiovascular system & hematologyenvironment and public healthMaleimideslcsh:Chemistrychemistry.chemical_compound0302 clinical medicinePhosphorylationlcsh:QH301-705.5SpectroscopyFeedback PhysiologicalKinaseConvulxinhemic and immune systemsGeneral MedicineComputer Science ApplicationsCell biologyAdenosine DiphosphateplateletsPhosphorylationbiological phenomena cell phenomena and immunityBlood Plateletschemical and pharmacologic phenomenaViper Venomsspleen tyrosine kinase (Syk)CatalysisArticleInorganic Chemistryglycoprotein VIglycoprotein Ibα03 medical and health sciencesCrotalid VenomsHumansSyk KinaseCyclic adenosine monophosphateLectins C-TypePlatelet activationPhysical and Theoretical ChemistryMolecular BiologyProtein kinase CPhospholipase C gammaOrganic Chemistryenzymes and coenzymes (carbohydrates)030104 developmental biologyProtein kinase domainchemistrylcsh:Biology (General)lcsh:QD1-999Calciumcyclic adenosine monophosphate (cAMP)protein kinase CInternational Journal of Molecular Sciences
researchProduct