Search results for "cavity quantum electrodynamics"
showing 10 items of 65 documents
Microscopic derivation of the Jaynes-Cummings model with cavity losses
2006
In this paper we provide a microscopic derivation of the master equation for the Jaynes-Cummings model with cavity losses. We single out both the differences with the phenomenological master equation used in the literature and the approximations under which the phenomenological model correctly describes the dynamics of the atom-cavity system. Some examples wherein the phenomenological and the microscopic master equations give rise to different predictions are discussed in detail.
Entanglement generation and protection by detuning modulation
2006
We introduce a protocol for steady-state entanglement generation and protection based on detuning modulation in the dissipative interaction between a two-qubit system and a bosonic mode. The protocol is a global-addressing scheme which only requires control over the system as a whole. We describe a postselection procedure to project the register state onto a subspace of maximally entangled states. We also outline how our proposal can be implemented in a circuit-quantum electrodynamics setup.
Generating and Revealing a Quantum Superposition of Electromagnetic Field Binomial States in a Cavity
2007
We introduce the $N$-photon quantum superposition of two orthogonal generalized binomial states of electromagnetic field. We then propose, using resonant atom-cavity interactions, non-conditional schemes to generate and reveal such a quantum superposition for the two-photon case in a single-mode high-$Q$ cavity. We finally discuss the implementation of the proposed schemes.
Observing the phase space trajectory of an entangled matter wave packet
2010
We observe the phase space trajectory of an entangled wave packet of a trapped ion with high precision. The application of a spin dependent light force on a superposition of spin states allows for coherent splitting of the matter wave packet such that two distinct components in phase space emerge. We observe such motion with a precision of better than 9% of the wave packet extension in both momentum and position, corresponding to a 0.8 nm position resolution. We accurately study the effect of the initial ion temperature on the quantum entanglement dynamics. Furthermore, we map out the phonon distributions throughout the action of the displacement force. Our investigation shows corrections t…
NON-MARKOVIAN DYNAMICS OF CAVITY LOSSES
2008
We provide a microscopic derivation for the non-Markovian master equation for an atom-cavity system with cavity losses and show that they can induce population trapping in the atomic excited state, when the environment outside the cavity has a non-flat spectrum. Our results apply to hybrid solid state systems and can turn out to be helpful to find the most appropriate description of leakage in the recent developments of cavity quantum electrodynamics.
Quantum emitter states dressed by the plasmon modes of a metal nanoparticle in the strong coupling regim
2017
The quantum control of emitters is a key issue for quantum information processing at the nanoscale. This generally necessitates the strong coupling of emitters to a high Q-cavity for efficient manipulation of the atoms and field dynamics (cavity quantum electrodynamics or cQED). Since almost a decade, strong efforts are put to transpose cQED concepts to plasmonics in order to profit of the strong mode confinement of surface plasmons polaritons. Despite the intrinsic presence of lossy channels leading to strong decoherence in plasmonics systems, it has been experimentally proven that it is possible to reach the strong coupling regim [1].
Single scatterings in single artificial atoms: Quantum coherence and entanglement
2003
We employ the quantum-jump approach to study single scatterings in single semiconductor quantum dots. Two prototypical situations are investigated. First, we analyze two-photon emissions from the cascade biexciton decay of a dot where the single-exciton states exhibit a fine-structure splitting. We show that this splitting results for appropriately chosen polarization filters in an oscillatory behavior of two-photon correlations, and carefully examine the proper theoretical description of the underlying scattering processes. Secondly, we analyze the decay of a single-electron charged exciton in a quantum dot embedded in a field effect structure. We show how the quantum properties of the cha…
Driven Appearance and Disappearance of Quantum Zeno Effect in the Dynamics of a Four-level Trapped Ion
2001
An example of constrained unitary quantum dynamics in the context of trapped ions is given. We study a laser driven four-level ion system confined in an isotropic three-dimensional Paul microtrap. Our main result is that when two independent controllable continuous measurement processes are simultaneously present, the unitary quantum dynamics of the system can be parametrically frozen into a one-dimensional Hilbert subspace (Quantum Zeno Effect) or constrained into a two-dimensional one, at will. Conditions under which one of the two processes acts upon the physical system inhibiting the effects due to the other one, are explicitly found and discussed (Hierarchically Controlled Dynamics).
Entanglement transfer in a noisy cavity network with parity-deformed fields
2019
We investigate the effects of parity-deformed fields on the dynamics of entanglement transfer to distant noninteracting atomic qubits. These qubits are embedded in two distant lossy cavities connected by a leaky short-length fiber (or additional cavity). The process is studied within a single-excitation subspace, the parity-deformed cavity photons allowing the introduction of static local classical fields, which function as a control. The mechanism of state transfer is analyzed in comparison to the uncontrolled case. We find that the transfer evolution exhibits an asymmetry with respect to atom-field detuning, being sensitive to the sign of the detuning. Under a linear interaction controlle…
Adiabatic quantum search scheme with atoms in a cavity driven by lasers
2007
We propose an implementation of the quantum search algorithm of a marked item in an unsorted list of N items by adiabatic passage in a cavity-laser-atom system. We use an ensemble of N identical three-level atoms trapped in a single-mode cavity and driven by two lasers. In each atom, the same level represents a database entry. One of the atoms is marked by having an energy gap between its two ground states. Appropriate time delays between the two laser pulses allow one to populate the marked state starting from an initial entangled state within a decoherence-free adiabatic subspace. The time to achieve such a process is shown to exhibit the Grover speedup.