Search results for "cavity"

showing 10 items of 641 documents

Bell's inequality violation for entangled generalized Bernoulli states in two spatially separate cavities

2005

We consider the entanglement of orthogonal generalized Bernoulli states in two separate single-mode high-$Q$ cavities. The expectation values and the correlations of the electric field in the cavities are obtained. We then define, in each cavity, a dichotomic operator expressible in terms of the field states which can be, in principle, experimentally measured by a probe atom that ``reads'' the field. Using the quantum correlations of couples of these operators, we construct a Bell's inequality which is shown to be violated for a wide range of the degree of entanglement and which can be tested in a simple way. Thus the cavity fields directly show quantum non-local properties. A scheme is als…

PhysicsQuantum PhysicsBell stateField (physics)Cavity quantum electrodynamicsFOS: Physical sciencesQuantum entanglementSettore FIS/03 - Fisica Della MateriaAtomic and Molecular Physics and OpticsEntanglementBernoulli's principleOperator (computer programming)Cavity radiation fieldBell's theoremQuantum mechanicsBell's inequalityBernoulli processQuantum Physics (quant-ph)Quantum
researchProduct

Entanglement between two superconducting qubits via interaction with nonclassical radiation

2003

We propose a scheme to physically interface superconducting nano-circuits and quantum optics. We address the transfer of quantum information between systems having different physical natures and defined in Hilbert spaces of different dimensions. In particular, we investigate the transfer of the entanglement initially in a non-classical state of a continuous-variable system to a pair of superconducting charge qubits. This set-up is able to drive an initially separable state of the qubits into an almost pure, highly entangled state suitable for quantum information processing.

PhysicsQuantum PhysicsBell stateNonlinear opticsQuantum informationCondensed Matter - Mesoscale and Nanoscale PhysicsCluster stateQuantum information; Josehson devices; Cavity QED; Nonlinear opticsFOS: Physical sciencesTheoryofComputation_GENERALCavity QEDQuantum PhysicsQuantum entanglementCondensed Matter PhysicsElectronic Optical and Magnetic MaterialsComputer Science::Emerging TechnologiesQuantum mechanicsMesoscale and Nanoscale Physics (cond-mat.mes-hall)Josehson devicesQuantum informationW stateQuantum Physics (quant-ph)Superconducting quantum computingEntanglement distillationQuantum teleportationPhysical Review B
researchProduct

Cross-Kerr nonlinearity in optomechanical systems

2015

We consider the response of a nanomechanical resonator interacting with an electromagnetic cavity via a radiation pressure coupling and a cross-Kerr coupling. Using a mean field approach we solve the dynamics of the system, and show the different corrections coming from the radiation pressure and the cross-Kerr effect to the usually considered linearized dynamics.

PhysicsQuantum PhysicsCondensed Matter - Mesoscale and Nanoscale Physicsta114Kerr nonlinearitynanomechanical resonatorsDynamics (mechanics)FOS: Physical sciencesPhysics::Optics01 natural sciencesAtomic and Molecular Physics and Optics010309 opticsNanomechanical resonatorCoupling (physics)Classical mechanicsRadiation pressureElectromagnetic cavityMesoscale and Nanoscale Physics (cond-mat.mes-hall)0103 physical sciencesQuantum Physics (quant-ph)010306 general physicsPhysical Review A
researchProduct

Validating and controlling quantum enhancement against noise by motion of a qubit

2019

Experimental validation and control of quantum traits for an open quantum system are important for any quantum information purpose. We consider a traveling atom qubit as a quantum memory with adjustable velocity inside a leaky cavity, adopting a quantum witness as a figure of merit for quantumness assessment. We show that this model constitutes an inherent physical instance where the quantum witness does not work properly if not suitably optimized. We then supply the optimal intermediate blind measurements which make the quantum witness a faithful tester of quantum coherence. We thus find that larger velocities protect quantumness against noise, leading to lifetime extension of hybrid qubit…

PhysicsQuantum PhysicsControl of quantum coherenceFOS: Physical sciencesQuantum entanglement01 natural sciencesNoise (electronics)Settore FIS/03 - Fisica Della Materia010305 fluids & plasmasOpen quantum systemCavity quantum electrodynamicQubitQuantum mechanicsOpen quantum system0103 physical sciencesFigure of meritQubitQuantum information010306 general physicsQuantum Physics (quant-ph)QuantumCoherence (physics)
researchProduct

Optical implementability of the two-dimensional Quantum Walk

2005

We propose an optical cavity implementation of the two-dimensional coined quantum walk on the line. The implementation makes use of only classical resources, and is tunable in the sense that a large number of different unitary transformations can be implemented by tuning some parameters of the device.

PhysicsQuantum PhysicsFOS: Physical sciencesPhysics::OpticsSense (electronics)TopologyUnitary stateAtomic and Molecular Physics and Opticslaw.inventionlawOptical cavityQuantum walkLine (text file)Quantum Physics (quant-ph)
researchProduct

Quantum Computation with Generalized Binomial States in Cavity Quantum Electrodynamics

2008

We study universal quantum computation in the cavity quantum electrodynamics (CQED) framework exploiting two orthonormal two-photon generalized binomial states as qubit and dispersive interactions of Rydberg atoms with high-$Q$ cavities. We show that an arbitrary qubit state may be generated and that controlled-NOT and 1-qubit rotation gates can be realized via standard atom-cavity interactions.

PhysicsQuantum PhysicsGeneralized binomial states cavity QEDPhysics and Astronomy (miscellaneous)Binomial (polynomial)Cavity quantum electrodynamicsPhysics::OpticsFOS: Physical sciencesState (functional analysis)Quantum PhysicsComputer Science::Emerging TechnologiesQuantum mechanicsQubitRydberg atomOrthonormal basisQuantum Physics (quant-ph)Rotation (mathematics)Quantum computer
researchProduct

Non-classicality of optomechanical devices in experimentally realistic operating regimes

2013

Enforcing a non-classical behavior in mesoscopic systems is important for the study of the boundaries between quantum and classical world. Recent experiments have shown that optomechanical devices are promising candidates to pursue such investigations. Here we consider two different setups where the indirect coupling between a three-level atom and the movable mirrors of a cavity is achieved. The resulting dynamics is able to conditionally prepare a non-classical state of the mirrors by means of projective measurements operated over a pure state of the atomic system. The non-classical features are persistent against incoherent thermal preparation of the mechanical systems and their dissipati…

PhysicsQuantum PhysicsMesoscopic physicsQuantum decoherencequantum optomechanical systems entanglement open quantum systems mesoscopic quantum systemsCavity quantum electrodynamicsFOS: Physical sciencesSettore FIS/03 - Fisica Della MateriaAtomic and Molecular Physics and OpticsMechanical systemChemical couplingQuantum mechanicsThermalAtomQuantum Physics (quant-ph)Quantum
researchProduct

Dissipative structures in optomechanical cavities

2012

Motivated by the increasing interest in the properties of multimode optomechanical devices, here we study a system in which a driven mode of a large-area optical cavity is despersively coupled to a deformable mechanical element. Two different models naturally appear in such scenario, for which we predict the formation of periodic patterns, localized structures (cavity solitons), and domain walls, among other complex nonlinear phenomena. Further, we propose a realistic design based on intracavity membranes where our models can be studied experimentally. Apart from its relevance to the field of nonlinear optics, the results put forward here are a necessary step towards understanding the quant…

PhysicsQuantum PhysicsMulti-mode optical fiberField (physics)FOS: Physical sciencesNonlinear opticsPhysics::OpticsPattern Formation and Solitons (nlin.PS)Degrees of freedom (mechanics)01 natural sciencesNonlinear Sciences - Pattern Formation and Solitonslaw.invention010309 opticsLongitudinal modeClassical mechanicslawOptical cavity0103 physical sciencesDissipative systemQuantum Physics (quant-ph)010306 general physicsQuantumOptics (physics.optics)Physics - Optics
researchProduct

Dressed states of a quantum emitter strongly coupled to a metal nanoparticle

2016

Hybrid molecule-plasmonic nanostructures have demonstrated their potential for surface enhanced spectroscopies, sensing, or quantum control at the nanoscale. In this Letter, we investigate the strong coupling regime and explicitly describe the hybridization between the localized plasmons of a metal nanoparticle and the excited state of a quantum emitter, offering a simple and precise understanding of the energy exchange in full analogy with cavity quantum electrodynamics treatment and a dressed atom picture. Both near-field emission and far-field radiation are discussed, revealing the richness of such optical nanosources.

PhysicsQuantum PhysicsNanostructureCondensed Matter - Mesoscale and Nanoscale PhysicsCavity quantum electrodynamicsFOS: Physical sciencesPhysics::OpticsNanoparticleNear and far field02 engineering and technologyRadiation021001 nanoscience & nanotechnology01 natural sciencesMolecular physicsAtomic and Molecular Physics and OpticsExcited stateMesoscale and Nanoscale Physics (cond-mat.mes-hall)0103 physical sciencesAtomQuantum Physics (quant-ph)010306 general physics0210 nano-technologyPlasmonOptics (physics.optics)Physics - OpticsOptics Letters
researchProduct

Cavity QED of a leaky planar resonator coupled to an atom and an input single-photon pulse

2013

In contrast to the free-space evolution of an atom governed by a multi-mode interaction with the surrounding electromagnetic vacuum, the evolution of a cavity-QED system can be characterized by just three parameters, (i) atom-cavity coupling strength g, (ii) cavity relaxation rate \kappa, and (iii) atomic decay rate into the non-cavity modes \gamma. In the case of an atom inserted into a planar resonator with an input beam coupled from the outside, it has been shown by Koshino [Phys. Rev. A 73, 053814 (2006)] that these three parameters are determined not only by the atom and cavity characteristics, but also by the spatial distribution of the input pulse. By an ab-initio treatment, we gener…

PhysicsQuantum PhysicsPhotonCavity quantum electrodynamicsFOS: Physical sciencesAtomic and Molecular Physics and OpticsPulse (physics)ResonatorPlanarQubitAtomPhysics::Atomic PhysicsAtomic physicsQuantum Physics (quant-ph)Radioactive decayPhysical Review A
researchProduct