6533b837fe1ef96bd12a1ffa
RESEARCH PRODUCT
Entanglement between two superconducting qubits via interaction with nonclassical radiation
G. Massimo PalmaGiuseppe FalciMauro PaternostroMyungshik Kimsubject
PhysicsQuantum PhysicsBell stateNonlinear opticsQuantum informationCondensed Matter - Mesoscale and Nanoscale PhysicsCluster stateQuantum information; Josehson devices; Cavity QED; Nonlinear opticsFOS: Physical sciencesTheoryofComputation_GENERALCavity QEDQuantum PhysicsQuantum entanglementCondensed Matter PhysicsElectronic Optical and Magnetic MaterialsComputer Science::Emerging TechnologiesQuantum mechanicsMesoscale and Nanoscale Physics (cond-mat.mes-hall)Josehson devicesQuantum informationW stateQuantum Physics (quant-ph)Superconducting quantum computingEntanglement distillationQuantum teleportationdescription
We propose a scheme to physically interface superconducting nano-circuits and quantum optics. We address the transfer of quantum information between systems having different physical natures and defined in Hilbert spaces of different dimensions. In particular, we investigate the transfer of the entanglement initially in a non-classical state of a continuous-variable system to a pair of superconducting charge qubits. This set-up is able to drive an initially separable state of the qubits into an almost pure, highly entangled state suitable for quantum information processing.
year | journal | country | edition | language |
---|---|---|---|---|
2003-07-23 | Physical Review B |