0000000000053955
AUTHOR
G. Massimo Palma
Reading a qubit quantum state with a quantum meter: time unfolding of quantum Darwinism and quantum information flux
Quantum non Markovianity and quantum Darwinism are two phenomena linked by a common theme: the flux of quantum information between a quantum system and the quantum environment it interacts with. In this work, making use of a quantum collision model, a formalism initiated by Sudarshan and his school, we will analyse the efficiency with which the information about a single qubit gained by a quantum harmonic oscillator, acting as a meter, is transferred to a bosonic environment. We will show how, in some regimes, such quantum information flux is inefficient, leading to the simultaneous emergence of non Markovian and non darwinistic behaviours
Effect of Static Disorder in an Electron-Fabry Perot Interferometr with Two Quantum Scattering Centers
In a recent paper -- F. Ciccarello \emph{et al.}, New J. Phys. \textbf{8}, 214 (2006) -- we have demonstrated that the electron transmission properties of a one-dimensional (1D) wire with two identical embedded spin-1/2 impurities can be significantly affected by entanglement between the spins of the scattering centers. Such effect is of particular interest in the control of transmission of quantum information in nanostructures and can be used as a detection scheme of maximally entangled states of two localized spins. In this letter, we relax the constraint that the two magnetic impurities are equal and investigate how the main results presented in the above paper are affected by a static d…
The role of auxiliary states in state discrimination with linear optical evices
The role of auxiliary photons in the problem of identifying a state secretly chosen from a given set of L-photon states is analyzed. It is shown that auxiliary photons do not increase the ability to discriminate such states by means of a global measurement using only optical linear elements, conditional transformation and auxiliary photons.
Quantum collision models: Open system dynamics from repeated interactions
We present an extensive introduction to quantum collision models (CMs), also known as repeated interactions schemes: a class of microscopic system-bath models for investigating open quantum systems dynamics whose use is currently spreading in a number of research areas. Through dedicated sections and a pedagogical approach, we discuss the CMs definition and general properties, their use for the derivation of master equations, their connection with quantum trajectories, their application in non-equilibrium quantum thermodynamics, their non-Markovian generalizations, their emergence from conventional system-bath microscopic models and link to the input-output formalism. The state of the art o…
Reinforcement learning approach to nonequilibrium quantum thermodynamics
We use a reinforcement learning approach to reduce entropy production in a closed quantum system brought out of equilibrium. Our strategy makes use of an external control Hamiltonian and a policy gradient technique. Our approach bears no dependence on the quantitative tool chosen to characterize the degree of thermodynamic irreversibility induced by the dynamical process being considered, require little knowledge of the dynamics itself and does not need the tracking of the quantum state of the system during the evolution, thus embodying an experimentally non-demanding approach to the control of non-equilibrium quantum thermodynamics. We successfully apply our methods to the case of single- …
Heat flux dynamics in dissipative cascaded systems
We study the dynamics of heat flux in the thermalization process of a pair of identical quantum system that interact dissipatively with a reservoir in a {\it cascaded} fashion. Despite the open dynamics of the bipartite system S is globally Lindbladian, one of the subsystems "sees" the reservoir in a state modified by the interaction with the other subsystem and hence it undergoes a non-Markovian dynamics. As a consequence, the heat flow exhibits a non-exponential time behaviour which can greatly deviate from the case where each party is independently coupled to the reservoir. We investigate both thermal and correlated initial states of $S$ and show that the presence of correlations at the …
Collisional picture of quantum optics with giant emitters
The effective description of the weak interaction between an emitter and a bosonic field as a sequence of two-body collisions provides a simple intuitive picture compared to traditional quantum optics methods as well as an effective calculation tool of the joint emitter-field dynamics. Here, this collisional approach is extended to many emitters (atoms or resonators), each generally interacting with the field at many coupling points ("giant" emitter). In the regime of negligible delays, the unitary describing each collision in particular features a contribution of a chiral origin resulting in an effective Hamiltonian. The picture is applied to derive a Lindblad master equation (ME) of a set…
Macroscopic entanglement in Josephson nanocircuits
We propose a scheme to generate and detect entanglement between charge states in superconducting nanocircuits. We discuss different procedures to discriminate such entanglement from classical correlations. The case of maximally entangled states of two and three coupled Josephson junctions is discussed as example.
Quantum correlations in dissipative gain–loss systems across exceptional points
We investigate the behavior of correlations dynamics in a dissipative gain-loss system. First, we consider a setup made of two coupled lossy oscillators, with one of them subject to a local gain. This provides a more realistic platform to implement parity-time (PT) symmetry circumventing the implementation of a pure gain. We show how the qualitative dynamics of correlations resembles that for a pure-gain-loss setup. The major quantitative effect is that quantum correlations are reduced, while total ones are enhanced. Second, we study the behavior of these correlations across an exceptional point (EP) outside of the PT-symmetric regime of parameters, observing how different behaviors across …
Shortcut to Adiabaticity in the Lipkin-Meshkov-Glick Model
We study transitionless quantum driving in an infinite-range many-body system described by the Lipkin-Meshkov-Glick model. Despite the correlation length being always infinite the closing of the gap at the critical point makes the driving Hamiltonian of increasing complexity also in this case. To this aim we develop a hybrid strategy combining shortcut to adiabaticity and optimal control that allows us to achieve remarkably good performance in suppressing the defect production across the phase transition.
Optomechanical to mechanical entanglement transformation
We present a scheme for generating entanglement between two mechanical oscillators that have never interacted with each other by using an entanglement-swapping protocol. The system under study consists of a Michelson-Morley interferometer comprising mechanical systems embodied by two cantilevers. Each of them is coupled to a field mode via the radiation pressure mechanism. Entanglement between the two mechanical systems is set by measuring the output modes of the interferometer. We also propose a control mechanism for the amount of entanglement based on path-length difference between the two arms. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.
Entanglement-induced electron coherence in a mesoscopic ring with two magnetic impurities
We investigate the Aharonov-Bohm (AB) interference pattern in the electron transmission through a mesoscopic ring in which two identical non-interacting magnetic impurities are embedded. Adopting a quantum waveguide theory, we derive the exact transmission probability amplitudes and study the influence of maximally entangled states of the impurity spins on the electron transmittivity interference pattern. For suitable electron wave vectors, we show that the amplitude of AB oscillations in the absence of impurities is in fact not reduced within a wide range of the electron-impurity coupling constant when the maximally entangled singlet state is prepared. Such state is thus able to inhibit th…
A geometric analysis of the effects of noise on Berry phase
In this work we describe the effect of classical and quantum noise on the Berry phase. It is not a topical review article but rather an overview of our work in this field aiming at giving a simple pictorial intuition of our results.
Composite quantum collision models
A collision model (CM) is a framework to describe open quantum dynamics. In its {\it memoryless} version, it models the reservoir $\mathcal R$ as consisting of a large collection of elementary ancillas: the dynamics of the open system $\mathcal{S}$ results from successive "collisions" of $\mathcal{S}$ with the ancillas of $\mathcal R$. Here, we present a general formulation of memoryless {\it composite} CMs, where $\mathcal S$ is partitioned into the very open system under study $S$ coupled to one or more auxiliary systems $\{S_i\}$. Their composite dynamics occurs through internal $S$-$\{S_i\}$ collisions interspersed with external ones involving $\{S_i\}$ and the reservoir $\mathcal R$. W…
Role of information backflow in the emergence of quantum Darwinism
Quantum Darwinism attempts to explain the emergence of objective reality of the state of a quantum system in terms of redundant information about the system acquired by independent non interacting fragments of the environment. The consideration of interacting environmental elements gives rise to a rich phenomenology, including the occurrence of non-Markovian features, whose effects on objectification {\it a' la} quantum Darwinism needs to be fully understood. We study a model of local interaction between a simple quantum system and a multi-mode environment that allows for a clear investigation of the interplay between information trapping and propagation in the environment and the emergence…
Dynamical entanglement-transfer for quantum information networks
A key element in the architecture of a quantum information processing network is a reliable physical interface between fields and qubits. We study a process of entanglement transfer engineering, where two remote qubits respectively interact with entangled two-mode continuous variable (CV) field. We quantify the entanglement induced in the qubit state at the expenses of the loss of entanglement in the CV system. We discuss the range of mixed entangled states which can be obtained with this set-up. Furthermore, we suggest a protocol to determine the residual entangling power of the light fields, inferring, thus, the entanglement left in the field modes which, after the interaction, are no lon…
ERGODICITY IN RANDOMLY COLLIDING QUBITS
The dynamics of a single qubit randomly colliding with an environment consisting of just two qubits is discussed. It is shown that the system reaches an equilibrium state which coincides with a pure random state of three qubits. Furthermore the time average and the ensemble averages of the quantities used to characterize the approach to equilibrium (purity and tangles) coincide, a signature of ergodic behavior.
Universal scaling for the quantum Ising chain with a classical impurity
We study finite size scaling for the magnetic observables of an impurity residing at the endpoint of an open quantum Ising chain in a transverse magnetic field, realized by locally rescaling the magnetic field by a factor $\mu \neq 1$. In the homogeneous chain limit at $\mu = 1$, we find the expected finite size scaling for the longitudinal impurity magnetization, with no specific scaling for the transverse magnetization. At variance, in the classical impurity limit, $\mu = 0$, we recover finite scaling for the longitudinal magnetization, while the transverse one basically does not scale. For this case, we provide both analytic approximate expressions for the magnetization and the susceptib…
Effects of noise on spin network cloning
We analyze the effects of noise on quantum cloning based on the spin network approach. A noisy environment interacting with the spin network is modeled both in a classical scenario, with a classical fluctuating field, and in a fully quantum scenario, in which the spins are coupled with a bath of harmonic oscillators. We compare the realization of cloning with spin networks and with traditional quantum gates in the presence of noise, and show that spin network cloning is more robust.
Microscopic biasing of discrete-time quantum trajectories
We develop a microscopic theory for biasing the quantum trajectories of an open quantum system, which renders rare trajectories typical. To this end we consider a discrete-time quantum dynamics, where the open system collides sequentially with qubit probes which are then measured. A theoretical framework is built in terms of thermodynamic functionals in order to characterize its quantum trajectories (each embodied by a sequence of measurement outcomes). We show that the desired biasing is achieved by suitably modifying the Kraus operators describing the discrete open dynamics. From a microscopical viewpoint and for short collision times, this corresponds to adding extra collisions which enf…
Quantum Critical Scaling under Periodic Driving
Universality is key to the theory of phase transition stating that the equilibrium properties of observables near a phase transition can be classified according to few critical exponents. These exponents rule an universal scaling behaviour that witnesses the irrelevance of the model's microscopic details at criticality. Here we discuss the persistence of such a scaling in a one-dimensional quantum Ising model under sinusoidal modulation in time of its transverse magnetic field. We show that scaling of various quantities (concurrence, entanglement entropy, magnetic and fidelity susceptibility) endures up to a stroboscopic time $\tau_{bd}$, proportional to the size of the system. This behavio…
Fidelity and leakage of Josephson qubits
The unit of quantum information is the qubit, a vector in a two-dimensional Hilbert space. On the other hand, quantum hardware often operates in two-dimensional subspaces of vector spaces of higher dimensionality. The presence of higher quantum states may affect the accuracy of quantum information processing. In this Letter we show how to cope with {\em quantum leakage} in devices based on small Josephson junctions. While the presence of higher charge states of the junction reduces the fidelity during gate operations we demonstrate that errors can be minimized by appropriately designing and operating the gates.
Entanglement entropy in a periodically driven quantum Ising chain
We numerically study the dynamics of entanglement entropy, induced by an oscillating time periodic driving of the transverse field, h(t), of a one-dimensional quantum Ising chain. We consider several realizations of h(t), and we find a number of results in analogy with entanglement entropy dynamics induced by a sudden quantum quench. After short-time relaxation, the dynamics of entanglement entropy synchronises with h(t), displaying an oscillatory behaviour at the frequency of the driving. Synchronisation in the dynamics of entanglement entropy, is spoiled by the appearance of quasi-revivals which fade out in the thermodynamic limit, and which we interpret using a quasi-particle picture ada…
Cloning transformations in spin networks without external control
In this paper we present an approach to quantum cloning with unmodulated spin networks. The cloner is realized by a proper design of the network and a choice of the coupling between the qubits. We show that in the case of phase covariant cloner the XY coupling gives the best results. In the 1->2 cloning we find that the value for the fidelity of the optimal cloner is achieved, and values comparable to the optimal ones in the general N->M case can be attained. If a suitable set of network symmetries are satisfied, the output fidelity of the clones does not depend on the specific choice of the graph. We show that spin network cloning is robust against the presence of static imperfection…
Quantum cloning in spin networks
We introduce an approach to quantum cloning based on spin networks and we demonstrate that phase covariant cloning can be realized using no external control but only with a proper design of the Hamiltonian of the system. In the 1 -> 2 cloning we find that the XY model saturates the value for the fidelity of the optimal cloner and gives values comparable to it in the genera N -> M case. We finally discuss the effect of external noise. Our protocol is much more robust to decoherence than a conventional procedure based on quantum gates.
Quantum correlations in PT -symmetric systems
Abstract We study the dynamics of correlations in a paradigmatic setup to observe PT -symmetric physics: a pair of coupled oscillators, one subject to a gain one to a loss. Starting from a coherent state, quantum correlations (QCs) are created, despite the system being driven only incoherently, and can survive indefinitely. Both total and QCs exhibit different scalings of their long-time behavior in the PT -broken/unbroken phase and at the exceptional point (EP). In particular, PT symmetry breaking is accompanied by non-zero stationary QCs. This is analytically shown and quantitatively explained in terms of entropy balance. The EP in particular stands out as the most classical configuration…
Reducing quantum control for spin - spin entanglement distribution.
We present a protocol that sets maximum stationary entanglement between remote spins through scattering of mobile mediators without initialization, post-selection or feedback of the mediators' state. No time-resolved tuning is needed and, counterintuitively, the protocol generates two-qubit singlet states even when classical mediators are used. The mechanism responsible for such effect is resilient against non-optimal coupling strengths and dephasing affecting the spins. The scheme uses itinerant particles and scattering centres and can be implemented in various settings. When quantum dots and photons are used a striking result is found: injection of classical mediators, rather than quantum…
Journeys from quantum optics to quantum technology
Sir Peter Knight is a pioneer in quantum optics which has now grown to an important branch of modern physics to study the foundations and applications of quantum physics. He is leading an effort to develop new technologies from quantum mechanics. In this collection of essays, we recall the time we were working with him as a postdoc or a PhD student and look at how the time with him has influenced our research.
Dynamical decoupling efficiency versus quantum non-Markovianity
We investigate the relationship between non-Markovianity and the effectiveness of a dynamical decoupling protocol for qubits undergoing pure dephasing. We consider an exact model in which dephasing arises due to a bosonic environment with a spectral density of the Ohmic class. This is parametrised by an Ohmicity parameter by changing which we can model both Markovian and non-Markovian environments. Interestingly, we find that engineering a non-Markovian environment is detrimental to the efficiency of the dynamical decoupling scheme, leading to a worse coherence preservation. We show that each dynamical decoupling pulse reverses the flow of quantum information and, on this basis, we investig…
Geometric phase induced by a cyclically evolving squeezed vacuum reservoir
We propose a new way to generate an observable geometric phase by means of a completely incoherent phenomenon. We show how to imprint a geometric phase to a system by "adiabatically" manipulating the environment with which it interacts. As a specific scheme we analyse a multilevel atom interacting with a broad-band squeezed vacuum bosonic bath. As the squeezing parameters are smoothly changed in time along a closed loop, the ground state of the system acquires a geometric phase. We propose also a scheme to measure such geometric phase by means of a suitable polarization detection.
Non-Markovian dynamics from band edge effects and static disorder
It was recently shown [S. Lorenzo et al., Sci. Rep. 7, 42729 (2017)] that the presence of static disorder in a bosonic bath - whose normal modes thus become all Anderson-localised - leads to non-Markovianity in the emission of an atom weakly coupled to it (a process which in absence of disorder is fully Markovian). Here, we extend the above analysis beyond the weak-coupling regime for a finite-band bath so as to account for band edge effects. We study the interplay of these with static disorder in the emergence of non-Markovian behaviour in terms of a suitable non-Markovianity measure.
Linear optical implementation of nonlocal product states and their indistinguishability
In a recent paper Bennett et al.[Phys. Rev.A 59, 1070 (1999)] have shown the existence of a basis of product states of a bipartite system with manifest non-local properties. In particular these states cannot be completely discriminated by means of bilocal measurements. In this paper we propose an optical realization of these states and we will show that they cannot be completely discriminate by means of a global measurement using only optical linear elements, conditional transformation and auxiliary photons.
System-environment correlations and Markovian embedding of quantum non-Markovian dynamics
We study the dynamics of a quantum system whose interaction with an environment is described by a collision model, i.e. the open dynamics is modelled through sequences of unitary interactions between the system and the individual constituents of the environment, termed "ancillas", which are subsequently traced out. In this setting non-Markovianity is introduced by allowing for additional unitary interactions between the ancillas. For this model, we identify the relevant system-environment correlations that lead to a non-Markovian evolution. Through an equivalent picture of the open dynamics, we introduce the notion of "memory depth" where these correlations are established between the syste…
Rising time of entanglement between scattering spins,
We investigate the time evolution of entanglement in a process where a mobile particle is scattered by static spins. We show that entanglement increases monotonically during a transient and then saturates to a steady-state value. For a quasi-monochromatic mobile particle, the transient time depends only on the group-velocity and width of the incoming wavepacket and is insensitive to the interaction strength and spin-number of the scattering particles. These features do not depend on the interaction model and can be seen in various physical settings.
Entanglement detection in Josephson nanocircuits
We describe a possible experimental scheme to generate and detect entanglement between charge states in superconducting nanocircuits, discriminating such entanglement from classical correlations. The case of maximally entangled singlet and GHZ states of two and three coupled Josephson junctions is discussed as an example.
Heat flux and quantum correlations in dissipative cascaded systems
We study the dynamics of heat flux in the thermalization process of a pair of identical quantum systems that interact dissipatively with a reservoir in a cascaded fashion. Despite that the open dynamics of the bipartite system $S$ is globally Lindbladian, one of the subsystems ``sees'' the reservoir in a state modified by the interaction with the other subsystem and hence it undergoes a non-Markovian dynamics. As a consequence, the heat flow exhibits a nonexponential time behavior which can greatly deviate from the case where each party is independently coupled to the reservoir. We investigate both thermal and correlated initial states of $S$ and show that the presence of correlations at th…
Eavesdropping on quantum-cryptographical systems
Quantum cryptography cannot prevent eavesdropping, but any eavesdropping attempt can be detected by the legitimate users of the communication channel. This is because eavesdropping affects the quantum state of the information carriers and results in an abnormal error rate. In this paper, we analyze various eavesdropping techniques, which may be either translucent or opaque to the transmitted photons, and we estimate the error rate above which the key distribution is deemed unsafe and should be abandoned. © 1994 The American Physical Society.
Entanglement swapping in a Franson interferometer setup
We propose a simple scheme to swap the non local correlations, characteristic of a Franson interferometric setup, between pairs of frequency entangled photons emitted by distinct non linear crystals in a parametric down conversion process. Our scheme consists of two distinct sources of frequency entangled photons. One photon of each pair is sent to a separate Mach - Zender interferometer while the other photons of the pairs are mixed by a beam splitter and then detected in a Ou - Mandel interferometer. For suitably postselected joint measuremetns, the photons sent at the Mach -Zender show a coincidence photocount statistics which depends non locally on the settings of the two interferometer…
Detection of Geometric Phases in Superconducting Nanocircuits
When a quantum mechanical system undergoes an adiabatic cyclic evolution it acquires a geometrical phase factor in addition to the dynamical one. This effect has been demonstrated in a variety of microscopic systems. Advances in nanotechnologies should enable the laws of quantum dynamics to be tested at the macroscopic level, by providing controllable artificial two-level systems (for example, in quantum dots and superconducting devices). Here we propose an experimental method to detect geometric phases in a superconducting device. The setup is a Josephson junction nanocircuit consisting of a superconducting electron box. We discuss how interferometry based on geometrical phases may be real…
Reversible and irreversible dynamics of a qubit interacting with a small environment
We analyze the dynamics of a system qubit interacting by means a sequence of pairwise collisions with an environment consisting of just two qubits. We show that the density operator of the qubits approaches a common time averaged equilibrium state, characterized by large fluctuations, only for a random sequence of collisions. For a regular sequence of collisions the qubitstates of the system and of the reservoir undergo instantaneous periodic oscillations and do not relax to a common state. Furthermore we show that pure bipartite entanglement is developed only when at least two qubits are initially in the same purestate while otherwise also genuine multipartite entanglement builds up.
Entanglement between two superconducting qubits via interaction with nonclassical radiation
We propose a scheme to physically interface superconducting nano-circuits and quantum optics. We address the transfer of quantum information between systems having different physical natures and defined in Hilbert spaces of different dimensions. In particular, we investigate the transfer of the entanglement initially in a non-classical state of a continuous-variable system to a pair of superconducting charge qubits. This set-up is able to drive an initially separable state of the qubits into an almost pure, highly entangled state suitable for quantum information processing.
Non-Hermitian Physics and Master Equations
A longstanding tool to characterize the evolution of open Markovian quantum systems is the GKSL (Gorini-Kossakowski-Sudarshan-Lindblad) master equation. However, in some cases, open quantum systems can be effectively described with non-Hermitian Hamiltonians, which have attracted great interest in the last twenty years due to a number of unconventional properties, such as the appearance of exceptional points. Here, we present a short review of these two different approaches aiming in particular to highlight their relation and illustrate different ways of connecting non-Hermitian Hamiltonian to a GKSL master equation for the full density matrix.
Dynamics of entanglement in one-dimensional spin systems
We study the dynamics of quantum correlations in a class of exactly solvable Ising-type models. We analyze in particular the time evolution of initial Bell states created in a fully polarized background and on the ground state. We find that the pairwise entanglement propagates with a velocity proportional to the reduced interaction for all the four Bell states. Singlet-like states are favored during the propagation, in the sense that triplet-like states change their character during the propagation under certain circumstances. Characteristic for the anisotropic models is the instantaneous creation of pairwise entanglement from a fully polarized state; furthermore, the propagation of pairwis…
Decoherence without entanglement and quantum Darwinism
It is often assumed that decoherence arises as a result of the entangling interaction between a quantum system and its environment, as a consequence of which the environment effectively measures the system, thus washing away its quantum properties. Moreover, this interaction results in the emergence of a classical objective reality, as described by quantum Darwinism. In this Rapid Communication, we show that the idea that entanglement is needed for decoherence is imprecise. We propose a dynamical mixing mechanism capable of inducing decoherence dynamics on a system without creating any entanglement with its quantum environment. We illustrate this mechanism by introducing a simple and exactl…
Stochastic collision model approach to transport phenomena in quantum networks
Abstract Noise-assisted transport phenomena highlight the nontrivial interplay between environmental effects and quantum coherence in achieving maximal efficiency. Due to the complexity of biochemical systems and their environments, effective open quantum system models capable of providing physical insights on the presence and role of quantum effects are highly needed. In this paper, we introduce a new approach that combines an effective quantum microscopic description with a classical stochastic one. Our stochastic collision model (SCM) describes both Markovian and non-Markovian dynamics without relying on the weak coupling assumption. We investigate the consequences of spatial and tempora…
Relaxation due to random collisions with a many-qudit environment
We analyze the dynamics of a system qudit of dimension mu sequentially interacting with the nu-dimensional qudits of a chain playing the ore of an environment. Each pairwise collision has been modeled as a random unitary transformation. The relaxation to equilibrium of the purity of the system qudit, averaged over random collisions, is analytically computed by means of a Markov chain approach. In particular, we show that the steady state is the one corresponding to the steady state for random collisions with a single environment qudit of effective dimension nu_e=nu*mu. Finally, we numerically investigate aspects of the entanglement dynamics for qubits (mu=nu=2) and show that random unitary …
Class of exact memory-kernel master equations
A well-known situation in which a non-Markovian dynamics of an open quantum system $S$ arises is when this is coherently coupled to an auxiliary system $M$ in contact with a Markovian bath. In such cases, while the joint dynamics of $S$-$M$ is Markovian and obeys a standard (bipartite) Lindblad-type master equation (ME), this is in general not true for the reduced dynamics of $S$. Furthermore, there are several instances (\eg the dissipative Jaynes-Cummings model) in which a {\it closed} ME for the $S$'s state {\it cannot} even be worked out. Here, we find a class of bipartite Lindblad-type MEs such that the reduced ME of $S$ can be derived exactly and in a closed form for any initial produ…
Quantum non-Markovianity induced by Anderson localization
As discovered by P. W. Anderson, excitations do not propagate freely in a disordered lattice, but, due to destructive interference, they localise. As a consequence when an atom interacts with a disordered lattice one indeed observes, a non-trivial excitation exchange between atom and lattice. Such non-trivial atomic dynamics will in general be characterised also by a non-trivial quantum information backflow, a clear signature of non-Markovian dynamics. To investigate the above scenario we consider a quantum emitter, or atom, weakly coupled to a uniform coupled-cavity array (CCA). If initially excited, in the absence of disorder, the emitter undergoes a Markovian spontaneous emission by rele…
Anti-Zeno-based dynamical control of the unfolding of quantum Darwinism
We combine the collisional picture for open system dynamics and the control of the rate of decoherence provided by the quantum (anti-)Zeno effect to illustrate the temporal unfolding of the redundant encoding of information into a multipartite environment that is at the basis of Quantum Darwinism, and to control it. The rate at which such encoding occurs can be enhanced or suppressed by tuning the dynamical conditions of system-environment interaction in a suitable and remarkably simple manner. This would help the design of a new generation of quantum experiments addressing the elusive phenomenology of Quantum Darwinism and thus its characterization.
Quantum Non-Markovian Piecewise Dynamics from Collision Models
Recently, a large class of quantum non-Markovian piecewise dynamics for an open quantum system obeying closed evolution equations has been introduced [B. Vacchini, Phys. Rev. Lett. 117, 230401 (2016)]. These dynamics have been defined in terms of a waiting-time distribution between quantum jumps, along with quantum maps describing the effect of jumps and the system's evolution between them. Here, we present a quantum collision model with memory, whose reduced dynamics in the continuous-time limit reproduces the above class of non-Markovian piecewise dynamics, thus providing an explicit microscopic realization.
Universal scaling of a classical impurity in the quantum Ising chain
We study finite size scaling for the magnetic observables of an impurity residing at the endpoint of an open quantum Ising chain in a transverse magnetic field, realized by locally rescaling the magnetic field by a factor $\mu \neq 1$. In the homogeneous chain limit at $\mu = 1$, we find the expected finite size scaling for the longitudinal impurity magnetization, with no specific scaling for the transverse magnetization. At variance, in the classical impurity limit, $\mu = 0$, we recover finite scaling for the longitudinal magnetization, while the transverse one basically does not scale. For this case, we provide both analytic approximate expressions for the magnetization and the susceptib…
Entanglement generation between two spin-s magnetic impurities in a solid via electron scattering
Abstract We present a scheme for generating entanglement between two magnetic impurities in a solid-state system via electron scattering. The scheme applies to impurities of arbitrary quantum spin number. We show that resonance conditions yield generation of a maximally entangled state of the impurities' spins, regardless of the value of the electron–impurity coupling constant and the impurity spin quantum number. The mechanism behind the scheme is explained in terms of resonance-induced selection rules.
Entanglement detection in hybrid optomechanical systems
We study a device formed by a Bose Einstein condensate (BEC) coupled to the field of a cavity with a moving end-mirror and find a working point such that the mirror-light entanglement is reproduced by the BEC-light quantum correlations. This provides an experimentally viable tool for inferring mirror-light entanglement with only a limited set of assumptions. We prove the existence of tripartite entanglement in the hybrid device, persisting up to temperatures of a few milli-Kelvin, and discuss a scheme to detect it.
Reading a Qubit Quantum State with a Quantum Meter: Time Unfolding of Quantum Darwinism and Quantum Information Flux
Quantum non-Markovianity and quantum Darwinism are two phenomena linked by a common theme: the flux of quantum information between a quantum system and the quantum environment it interacts with. In this work, making use of a quantum collision model, a formalism initiated by Sudarshan and his school, we will analyse the efficiency with which the information about a single qubit gained by a quantum harmonic oscillator, acting as a meter, is transferred to a bosonic environment. We will show how, in some regimes, such quantum information flux is inefficient, leading to the simultaneous emergence of non-Markovian and non-darwinistic behaviours.
Transition behavior in the channel capacity of two-quibit channels with memory
We prove that a general upper bound on the maximal mutual information of quantum channels is saturated in the case of Pauli channels with an arbitrary degree of memory. For a subset of such channels we explicitly identify the optimal signal states. We show analytically that for such a class of channels entangled states are indeed optimal above a given memory threshold.
Quantum jump statistics with a shifted jump operator in a chiral waveguide
Resonance fluorescence, consisting of light emission from an atom driven by a classical oscillating field, is well-known to yield a sub-Poissonian photon counting statistics. This occurs when only emitted light is detected, which corresponds to a master equation (ME) unraveling in terms of the canonical jump operator describing spontaneous decay. Formally, an alternative ME unraveling is possible in terms of a shifted jump operator. We show that this shift can result in sub-Poissonian, Poissonian or super-Poissonian quantum jump statistics. This is shown in terms of the Mandel Q parameter in the limit of long counting times, which is computed through large deviation theory. We present a wav…
Can entanglement be extracted from many body systems?
Some thermodynamical properties of solids, such as heat capacity and magnetic susceptibility, have recently been shown to be linked to the amount of entanglement in a solid. Until now, however, it was not clear whether this entanglement can be used as a resource in quantum information theory. Here we show that this entanglement is physical, demonstrating the principles of its extraction from a typical spin chain by scattering two particles off the system. Moreover, we show how to simulate this process using present-day optical lattice technology. © 2007 World Scientific Publishing Company.
Berry phase in open quantum systems: a quantum Langevin equation approach
The evolution of a two level system with a slowly varying Hamiltonian, modeled as s spin 1/2 in a slowly varying magnetic field, and interacting with a quantum environment, modeled as a bath of harmonic oscillators is analyzed using a quantum Langevin approach. This allows to easily obtain the dissipation time and the correction to the Berry phase in the case of an adiabatic cyclic evolution.
Witnessing nonclassicality through large deviations in quantum optics
Non-classical correlations in quantum optics as resources for quantum computation are important in the quest for highly-specialized quantum devices. The standard way to investigate such effects relies on either the characterization of the inherent features of sources and circuits or the study of the output radiation of a given optical setup. The latter approach demands an extensive description of the output fields, but often overlooks the dynamics of the sources. Conversely, the former discards most of the information about the single trajectories, which are observed in experimental measurements. In this work we provide a natural link between the two frameworks by exploiting the thermodynam…
Observable geometric phase induced by a cyclically evolving dissipative process
In a prevous paper (Phys. Rev. Lett. 96, 150403 (2006)) we have proposed a new way to generate an observable geometric phase on a quantum system by means of a completely incoherent phenomenon. The basic idea was to force the ground state of the system to evolve ciclically by "adiabatically" manipulating the environment with which it interacts. The specific scheme we have previously analyzed, consisting of a multilevel atom interacting with a broad-band squeezed vacuum bosonic bath whose squeezing parameters are smoothly changed in time along a closed loop, is here solved in a more direct way. This new solution emphasizes how the geometric phase on the ground state of the system is indeed du…