6533b82bfe1ef96bd128e30a

RESEARCH PRODUCT

Rising time of entanglement between scattering spins,

G. Massimo PalmaMauro PaternostroMichelangelo ZarconeFrancesco Ciccarello

subject

PhysicsQuantum Physicsquantum information theory transport in mesoscopic structuresSpinsCondensed matter physicsCondensed Matter - Mesoscale and Nanoscale PhysicsScatteringWave packetTime evolutionFOS: Physical sciencesQuantum entanglementCondensed Matter PhysicsSpin quantum numberElectronic Optical and Magnetic MaterialsQuantum mechanicsMesoscale and Nanoscale Physics (cond-mat.mes-hall)ParticleGroup velocityQuantum Physics (quant-ph)

description

We investigate the time evolution of entanglement in a process where a mobile particle is scattered by static spins. We show that entanglement increases monotonically during a transient and then saturates to a steady-state value. For a quasi-monochromatic mobile particle, the transient time depends only on the group-velocity and width of the incoming wavepacket and is insensitive to the interaction strength and spin-number of the scattering particles. These features do not depend on the interaction model and can be seen in various physical settings.

10.1103/physrevb.80.165313http://hdl.handle.net/10447/46121