6533b860fe1ef96bd12c3c39

RESEARCH PRODUCT

Universal scaling of a classical impurity in the quantum Ising chain

Tony J. G. ApollaroGianluca FrancicaDomenico GiulianoGiovanni FalconeG. Massimo PalmaFrancesco Plastina

subject

High Energy Physics - TheoryQuantum PhysicsStatistical Mechanics (cond-mat.stat-mech)High Energy Physics - Theory (hep-th)FOS: Physical sciencesQuantum Physics (quant-ph)Condensed Matter - Statistical Mechanics

description

We study finite size scaling for the magnetic observables of an impurity residing at the endpoint of an open quantum Ising chain in a transverse magnetic field, realized by locally rescaling the magnetic field by a factor $\mu \neq 1$. In the homogeneous chain limit at $\mu = 1$, we find the expected finite size scaling for the longitudinal impurity magnetization, with no specific scaling for the transverse magnetization. At variance, in the classical impurity limit, $\mu = 0$, we recover finite scaling for the longitudinal magnetization, while the transverse one basically does not scale. For this case, we provide both analytic approximate expressions for the magnetization and the susceptibility as well as numerical evidences for the scaling behavior. At intermediate values of $\mu$, finite size scaling is violated, and we provide a possible explanation of this result in terms of the appearance of a second, impurity related length scale. Finally, on going along the standard quantum-to-classical mapping between statistical models, we derive the classical counterpart of the quantum Ising chain with an impurity at its endpoint as a classical Ising model on a square lattice wrapped on a half-infinite cylinder, with the links along the first circle modified as a function of $\mu$.

10.1103/physrevb.96.155145http://arxiv.org/abs/1706.09834