0000000001140607

AUTHOR

Francesco Plastina

showing 21 related works from this author

Quantum-state transfer via resonant tunneling through local-field-induced barriers

2013

Efficient quantum-state transfer is achieved in a uniformly coupled spin-1/2 chain, with open boundaries, by application of local magnetic fields on the second and last-but-one spins, respectively. These effective barriers induce the appearance of two eigenstates, bilocalized at the edges of the chain, which allow a high-quality transfer also at relatively long distances. The same mechanism may be used to send an entire e-bit (e.g., an entangled qubit pair) from one to the other end of the chain. DOI: 10.1103/PhysRevA.87.042313

DYNAMICSDISORDERPhysicsDOTSQuantum PhysicsENTANGLEMENT; CHAINS; PROPAGATION; DYNAMICS; DISORDER; QUBITS; DOTSCondensed matter physicsSpinsFOS: Physical sciencesPROPAGATIONSettore FIS/03 - Fisica Della MateriaAtomic and Molecular Physics and OpticsQUBITSMagnetic fieldCondensed Matter - Other Condensed MatterQuality (physics)Chain (algebraic topology)QubitCHAINSQuantum Physics (quant-ph)Quantum information scienceENTANGLEMENTLocal fieldQuantum tunnellingOther Condensed Matter (cond-mat.other)Physical Review A
researchProduct

Macroscopic entanglement in Josephson nanocircuits

2001

We propose a scheme to generate and detect entanglement between charge states in superconducting nanocircuits. We discuss different procedures to discriminate such entanglement from classical correlations. The case of maximally entangled states of two and three coupled Josephson junctions is discussed as example.

SuperconductivityJosephson effectPhysicsCondensed matter physicsJosephson phaseCondensed Matter - Mesoscale and Nanoscale PhysicsCondensed Matter - SuperconductivityFOS: Physical sciencesCharge (physics)Quantum entanglementQuantum PhysicsSuperconductivity (cond-mat.supr-con)Quantum mechanicsCondensed Matter::SuperconductivityMesoscale and Nanoscale Physics (cond-mat.mes-hall)W stateQuantum computer
researchProduct

The role of environmental correlations in the non-Markovian dynamics of a spin system

2011

We put forward a framework to study the dynamics of a chain of interacting quantum particles affected by individual or collective multi-mode environment, focussing on the role played by the environmental quantum correlations over the evolution of the chain. The presence of entanglement in the state of the environmental system magnifies the non-Markovian nature of the chain's dynamics, giving rise to structures in figures of merit such as entanglement and purity that are not observed under a separable multi-mode environment. Our analysis can be relevant to problems tackling the open-system dynamics of biological complexes of strong current interest.

PhysicsQuantum discordQuantum PhysicsQuantum dynamicsFOS: Physical sciencesCIRCUITQuantum entanglementRESONANCESettore FIS/03 - Fisica Della MateriaAtomic and Molecular Physics and OpticsQuantum technologyOpen quantum systemQuantum processQuantum mechanicsCAVITYStatistical physicsQuantum Physics (quant-ph)Quantum dissipationAmplitude damping channel
researchProduct

Shot noise for resonant Cooper pair tunneling

2001

We study intrinsic noise of current in a superconducting single-electron transistor, taking into account both coherence effects and Coulomb interaction near a Cooper-pair resonance. Due to this interplay, the statistics of tunneling events deviates from the Poisson distribution and, more important, it shows even-odd asymmetry in the transmitted charge. The zero-frequency noise is suppressed significantly when the quasiparticle tunneling rates are comparable to the coherent oscillation frequency of Cooper pairs.

PhysicsSuperconductivityCondensed matter physicsCondensed Matter - Mesoscale and Nanoscale PhysicsStrongly Correlated Electrons (cond-mat.str-el)media_common.quotation_subjectQuantum noiseShot noiseGeneral Physics and AstronomyFOS: Physical sciencesCondensed Matter::Mesoscopic Systems and Quantum Hall EffectAsymmetry530Condensed Matter - Strongly Correlated ElectronsQuantum mechanicsCondensed Matter::SuperconductivityMesoscale and Nanoscale Physics (cond-mat.mes-hall)QuasiparticleCoulombCooper pairQuantum tunnellingmedia_common
researchProduct

Competition between memory-keeping and memory-erasing decoherence channels

2014

We study the competing effects of simultaneous Markovian and non-Markovian decoherence mechanisms acting on a single spin. We show the existence of a threshold in the relative strength of such mechanisms above which the spin dynamics becomes fully Markovian, as revealed by the use of several non-Markovianity measures. We identify a measure-dependent nested structure of such thresholds, hinting at a causality relationship among the various non-Markovianity witnesses used in our analysis. Our considerations are then used to argue the unavoidably non-Markovian evolution of a single-electron quantum dot exposed to both intrinsic and Markovian technical noise, the latter of arbitrary strength. 

Quantum decoherenceNON-MARKOVIAN DYNAMICSMarkov processFOS: Physical sciencesRelative strengthSPINS01 natural sciencesNoise (electronics)Settore FIS/03 - Fisica Della Materia010305 fluids & plasmasCausality (physics)symbols.namesakeSYSTEMSQuantum mechanics0103 physical sciencesStatistical physicsQuantum information010306 general physicsSpin-½PhysicsQuantum Physics/dk/atira/pure/subjectarea/asjc/3100/3107Atomic and Molecular Physics and OpticsQuantum dotsymbolsSEMICONDUCTOR QUANTUM DOTSQuantum Physics (quant-ph)
researchProduct

Transport of Quantum Correlations across a spin chain

2012

Some of the recent developments concerning the propagation of quantum correlations across spin channels are reviewed. In particular, we focus on the improvement of the transport efficiency obtained by the manipulation of few energy parameters (either end-bond strengths or local magnetic fields) near the sending and receiving sites. We give a physically insightful description of various such schemes and discuss the transfer of both entanglement and of quantum discord.

PhysicsQuantum PhysicsQuantum discordSpin modelFOS: Physical sciencesStatistical and Nonlinear PhysicsQuantum entanglementCondensed Matter PhysicsSettore FIS/03 - Fisica Della MateriaMagnetic fieldSpin chainStatistical physicsquantum communicationQuantum Physics (quant-ph)Focus (optics)entanglementQuantumSpin-½
researchProduct

Universal scaling for the quantum Ising chain with a classical impurity

2017

We study finite size scaling for the magnetic observables of an impurity residing at the endpoint of an open quantum Ising chain in a transverse magnetic field, realized by locally rescaling the magnetic field by a factor $\mu \neq 1$. In the homogeneous chain limit at $\mu = 1$, we find the expected finite size scaling for the longitudinal impurity magnetization, with no specific scaling for the transverse magnetization. At variance, in the classical impurity limit, $\mu = 0$, we recover finite scaling for the longitudinal magnetization, while the transverse one basically does not scale. For this case, we provide both analytic approximate expressions for the magnetization and the susceptib…

PhysicsLength scaleElectronic Optical and Magnetic Materials; Condensed Matter PhysicsElectronic Optical and Magnetic MaterialObservable--Condensed Matter Physics01 natural sciencesSquare latticeSettore FIS/03 - Fisica Della Materia010305 fluids & plasmasMagnetic fieldMagnetizationQuantum mechanics0103 physical sciencesIsing model010306 general physicsQuantumScaling
researchProduct

Quantum Critical Scaling under Periodic Driving

2016

Universality is key to the theory of phase transition stating that the equilibrium properties of observables near a phase transition can be classified according to few critical exponents. These exponents rule an universal scaling behaviour that witnesses the irrelevance of the model's microscopic details at criticality. Here we discuss the persistence of such a scaling in a one-dimensional quantum Ising model under sinusoidal modulation in time of its transverse magnetic field. We show that scaling of various quantities (concurrence, entanglement entropy, magnetic and fidelity susceptibility) endures up to a stroboscopic time $\tau_{bd}$, proportional to the size of the system. This behavio…

Phase transitionScienceFOS: Physical sciencesmagnetic fieldQuantum entanglement01 natural sciencesArticle010305 fluids & plasmas0103 physical sciencesEntropy (information theory)humanStatistical physics010306 general physicsScalingQuantumCondensed Matter - Statistical MechanicsPhysicsQuantum PhysicsmodelMultidisciplinaryStatistical Mechanics (cond-mat.stat-mech)behaviorQRMultidisciplinary critical processes quantum phase transitionsObservablemodulationMedicineIsing modelQuantum Physics (quant-ph)entropyCritical exponentScientific Reports
researchProduct

Orthogonality Catastrophe and Decoherence in a Trapped-Fermion Environment

2012

The Fermi edge singularity and the Anderson orthogonality catastrophe describe the universal physics which occurs when a Fermi sea is locally quenched by the sudden switching of a scattering potential, leading to a brutal disturbance of its ground state. We demonstrate that the effect can be seen in the controllable domain of ultracold trapped gases by providing an analytic description of the out-of-equilibrium response to an atomic impurity, both at zero and at finite temperature. Furthermore, we link the transient behavior of the gas to the decoherence of the impurity, and, in particular to the amount of non-markovianity of its dynamics.

DYNAMICSQuantum decoherenceSINGULARITIESCarbon nanotubesFOS: Physical sciencesGeneral Physics and AstronomyX-RAY ABSORPTIONPolaronCARBON NANOTUBESSettore FIS/03 - Fisica Della MateriaX-ray absorptionEmissionSingularityOrthogonalityQuantum mechanicsMesoscale and Nanoscale Physics (cond-mat.mes-hall)Condensed Matter::Quantum GasesPhysicsQuantum PhysicsCondensed Matter - Mesoscale and Nanoscale PhysicsScatteringPolaronsFermionKONDO PROBLEMDynamicsKondo problemMetalsPOLARONSCondensed Matter::Strongly Correlated ElectronsGravitational singularityMETALSEMISSIONSingularitiesQuantum Physics (quant-ph)Ground statePhysical Review Letters
researchProduct

Entanglement detection in Josephson nanocircuits

2002

We describe a possible experimental scheme to generate and detect entanglement between charge states in superconducting nanocircuits, discriminating such entanglement from classical correlations. The case of maximally entangled singlet and GHZ states of two and three coupled Josephson junctions is discussed as an example.

Josephson effectSuperconductivityPhysicsGreenberger–Horne–Zeilinger stateCondensed Matter::SuperconductivityQubitQuantum mechanicsCharge (physics)Quantum PhysicsSinglet stateQuantum entanglementCooper pairAtomic and Molecular Physics and Optics
researchProduct

Local Quench, Majorana Zero Modes, and Disturbance Propagation in the Ising chain

2016

We study the generation and propagation of local perturbations in a quantum many-body spin system. In particular, we study the Ising model in transverse field in the presence of a local field defect at one edge. This system possesses a rich phase diagram with different regions characterized by the presence of one or two Majorana zero modes. We show that their localized character {\it i}) enables a characterization of the Ising phase transition through a local-only measurement performed on the edge spin, and {\it ii}) strongly affects the propagation of quasiparticles emitted after the sudden removal of the defect, so that the dynamics of the local magnetization show clear deviations from a …

Physics---Phase transitionQuantum PhysicsCondensed matter physicsFOS: Physical sciencesFermion01 natural sciences010305 fluids & plasmasMAJORANAQuantum Gases (cond-mat.quant-gas)Quantum mechanics0103 physical sciencesQuasiparticleIsing model010306 general physicsQuantum Physics (quant-ph)Condensed Matter - Quantum GasesLocal fieldPhase diagramSpin-½
researchProduct

Geometrical characterization of non-Markovianity

2013

We introduce a new tool for the quantitative characterisation of the departure form Markovianity of a given dynamical process. Our tool can be applied to a generic $N$-level system and extended straightforwardly to Gaussian continuous-variable systems. It is linked to the change of the volume of physical states that are dynamically accessible to a system and provides qualitative expectations in agreement with some of the analogous tools proposed so far. We illustrate its prediticve power by tackling a few canonical examples.

PhysicsQuantum PhysicsN-LEVEL SYSTEMSQuantum decoherenceGaussianProcess (computing)FOS: Physical sciencesAtomic and Molecular Physics and OpticsSettore FIS/03 - Fisica Della MateriaCharacterization (materials science)DYNAMICAL SEMIGROUPSsymbols.namesakeN-LEVEL SYSTEMS; DYNAMICAL SEMIGROUPSMeasurement theorysymbolsStatistical physicsQuantum Physics (quant-ph)
researchProduct

Decoherence in a fermion environment: Non-Markovianity and Orthogonality Catastrophe

2013

We analyze the non-Markovian character of the dynamics of an open two-level atom interacting with a gas of ultra-cold fermions. In particular, we discuss the connection between the phenomena of orthogonality catastrophe and Fermi edge singularity occurring in such a kind of environment and the memory-keeping effects which are displayed in the time evolution of the open system.

Statistics and ProbabilityPhysicsCondensed Matter::Quantum GasesQuantum PhysicsQuantum decoherenceTime evolutionFOS: Physical sciencesStatistical and Nonlinear PhysicsFermionOpen system (systems theory)orthogonality catastrophe markovianitySettore FIS/03 - Fisica Della MateriaTheoretical physicsSingularityQuantum mechanicsQuantum Physics (quant-ph)Mathematical PhysicsFermi Gamma-ray Space Telescope
researchProduct

Scaling of Berry's phase close to the Dicke quantum phase transition

2006

We discuss the thermodynamic and finite size scaling properties of the geometric phase in the adiabatic Dicke model, describing the super-radiant phase transition for an $N$ qubit register coupled to a slow oscillator mode. We show that, in the thermodynamic limit, a non zero Berry phase is obtained only if a path in parameter space is followed that encircles the critical point. Furthermore, we investigate the precursors of this critical behavior for a system with finite size and obtain the leading order in the 1/N expansion of the Berry phase and its critical exponent.

Quantum phase transitionPhysicsQuantum PhysicsPhase transitionFOS: Physical sciencesGeneral Physics and AstronomyGeometric phaseCritical point (thermodynamics)Quantum mechanicsQubitThermodynamic limitQuantum phase transition Berry phaseQuantum Physics (quant-ph)Adiabatic processCritical exponentEurophysics Letters (EPL)
researchProduct

Transfer of arbitrary two-qubit states via a spin chain

2015

We investigate the fidelity of the quantum state transfer (QST) of two qubits by means of an arbitrary spin-1/2 network, on a lattice of any dimensionality. Under the assumptions that the network Hamiltonian preserves the magnetization and that a fully polarized initial state is taken for the lattice, we obtain a general formula for the average fidelity of the two qubits QST, linking it to the one- and two-particle transfer amplitudes of the spin-excitations among the sites of the lattice. We then apply this formalism to a 1D spin chain with XX-Heisenberg type nearest-neighbour interactions adopting a protocol that is a generalization of the single qubit one proposed in Ref. [Phys. Rev. A 8…

FOS: Physical sciencesSettore FIS/03 - Fisica Della MateriaMagnetizationsymbols.namesakeAtomic and Molecular PhysicsLattice (order)Quantum mechanicstwo-qubit statesQuantum informationQuantum information sciencespin chainPhysicsQuantum Physicsspin chain quantum state transfer quantum communicationquantum state transferSpin quantum numberAtomic and Molecular Physics and OpticsCondensed Matter - Other Condensed MatterQubitsymbolsand OpticsHamiltonian (quantum mechanics)Quantum Physics (quant-ph)Curse of dimensionalityOther Condensed Matter (cond-mat.other)
researchProduct

Dynamics of entanglement in one-dimensional spin systems

2003

We study the dynamics of quantum correlations in a class of exactly solvable Ising-type models. We analyze in particular the time evolution of initial Bell states created in a fully polarized background and on the ground state. We find that the pairwise entanglement propagates with a velocity proportional to the reduced interaction for all the four Bell states. Singlet-like states are favored during the propagation, in the sense that triplet-like states change their character during the propagation under certain circumstances. Characteristic for the anisotropic models is the instantaneous creation of pairwise entanglement from a fully polarized state; furthermore, the propagation of pairwis…

PhysicsQuantum PhysicsBell stateStrongly Correlated Electrons (cond-mat.str-el)STATISTICAL MECHANICSFOS: Physical sciencesXY-MODELQuantum PhysicsQuantum entanglementSquashed entanglementMultipartite entanglementQUANTUM STATESAtomic and Molecular Physics and OpticsCondensed Matter - Strongly Correlated ElectronsLocal hidden variable theoryBell's theoremQuantum mechanicsSTATISTICAL MECHANICS; QUANTUM STATES; XY-MODELQuantum Physics (quant-ph)Entanglement witnessQuantum computerPhysical Review A
researchProduct

Many-qubit quantum state transfer via spin chains

2015

The transfer of an unknown quantum state, from a sender to a receiver, is one of the main requirements to perform quantum information processing tasks. In this respect, the state transfer of a single qubit by means of spin chains has been widely discussed, and many protocols aiming at performing this task have been proposed. Nevertheless, the state transfer of more than one qubit has not been properly addressed so far. In this paper, we present a modified version of a recently proposed quantum state transfer protocol [Phys. Rev. A 87, 062309 (2013)] to obtain a quantum channel for the transfer of two qubits. This goal is achieved by exploiting Rabi-like oscillations due to excitations induc…

PhysicsQuantum PhysicsAngular momentumFOS: Physical sciencesQuantum channelState (functional analysis)quantum state transferCondensed Matter PhysicsAtomic and Molecular Physics and OpticsMagnetic fieldPhysics and Astronomy (all)quantum spin chainmany-body systemquantum informationQuantum stateQuantum mechanicsQubitQuantum informationmany-body systems; quantum information; quantum spin chain; quantum state transfer; Physics and Astronomy (all)Quantum Physics (quant-ph)many-body systemsMathematical PhysicsSpin-½Physica Scripta
researchProduct

Routing quantum information in spin chains

2013

Two different models for performing efficiently routing of a quantum state are presented. Both cases involve an XX spin chain working as data bus and additional spins that play the role of sender and receivers, one of which is selected to be the target of the quantum state transmission protocol via a coherent quantum coupling mechanism making use of local/global magnetic fields. Quantum routing is achieved, in the first of the models considered, by weakly coupling the sender and the receiver to the data bus. In the second model, strong magnetic fields acting on additional spins located between the sender/receiver and the data bus allow us to perform high fidelity routing.

FOS: Physical sciencesNetworkQuantum capacityTopology01 natural sciencesAtomic mott insulatorSettore FIS/03 - Fisica Della Materia010305 fluids & plasmasQuantum stateAtomic and Molecular Physics0103 physical sciencesComputer Science::Networking and Internet ArchitectureQuantum couplingQuantum information010306 general physicsQuantum information scienceSystem busSpin-½PhysicsQuantum PhysicsHardware_MEMORYSTRUCTURESState transferAtomic and Molecular Physics and OpticsQuantum information quantum comunicationPhaseRouting (electronic design automation)and OpticsQuantum Physics (quant-ph)
researchProduct

Tuning non-Markovianity by spin-dynamics control

2013

We study the interplay between forgetful and memory-keeping evolution enforced on a two-level system by a multi-spin environment whose elements are coupled to local bosonic baths. Contrarily to the expectation that any non-Markovian effect would be buried by the forgetful mechanism induced by the spin-bath coupling, one can actually induce a full Markovian-to-non-Markovian transition of the two-level system's dynamics, controllable by parameters such as the mismatch between the energy of the two-level system and of the spin environment. For a symmetric coupling, the amount of non-Markovianity surprisingly grows with the number of decoherence channels.

PhysicsQuantum PhysicsQuantum decoherenceSpin dynamicsCondensed matter physicsFOS: Physical sciencesAtomic and Molecular Physics and OpticsSettore FIS/03 - Fisica Della MateriaCoupling (physics)Quantum mechanicsQuantum open sytem markovianitySymmetric couplingQuantum informationQuantum Physics (quant-ph)Quantum statistical mechanicsControl (linguistics)Spin-½
researchProduct

Variational Gibbs State Preparation on NISQ devices

2023

The preparation of an equilibrium thermal state of a quantum many-body system on noisy intermediate-scale (NISQ) devices is an important task in order to extend the range of applications of quantum computation. Faithful Gibbs state preparation would pave the way to investigate protocols such as thermalization and out-of-equilibrium thermodynamics, as well as providing useful resources for quantum algorithms, where sampling from Gibbs states constitutes a key subroutine. We propose a variational quantum algorithm (VQA) to prepare Gibbs states of a quantum many-body system. The novelty of our VQA consists in implementing a parameterized quantum circuit acting on two distinct, yet connected, q…

Quantum PhysicsStatistical Mechanics (cond-mat.stat-mech)FOS: Physical sciencesQuantum Physics (quant-ph)Condensed Matter - Statistical Mechanics
researchProduct

Universal scaling of a classical impurity in the quantum Ising chain

2017

We study finite size scaling for the magnetic observables of an impurity residing at the endpoint of an open quantum Ising chain in a transverse magnetic field, realized by locally rescaling the magnetic field by a factor $\mu \neq 1$. In the homogeneous chain limit at $\mu = 1$, we find the expected finite size scaling for the longitudinal impurity magnetization, with no specific scaling for the transverse magnetization. At variance, in the classical impurity limit, $\mu = 0$, we recover finite scaling for the longitudinal magnetization, while the transverse one basically does not scale. For this case, we provide both analytic approximate expressions for the magnetization and the susceptib…

High Energy Physics - TheoryQuantum PhysicsStatistical Mechanics (cond-mat.stat-mech)High Energy Physics - Theory (hep-th)FOS: Physical sciencesQuantum Physics (quant-ph)Condensed Matter - Statistical Mechanics
researchProduct