6533b852fe1ef96bd12aac76

RESEARCH PRODUCT

Routing quantum information in spin chains

Tony J. G. ApollaroTony J. G. ApollaroSalvatore LorenzoGian Luca GiorgiGian Luca GiorgiSimone PaganelliSimone PaganelliFrancesco Plastina

subject

FOS: Physical sciencesNetworkQuantum capacityTopology01 natural sciencesAtomic mott insulatorSettore FIS/03 - Fisica Della Materia010305 fluids & plasmasQuantum stateAtomic and Molecular Physics0103 physical sciencesComputer Science::Networking and Internet ArchitectureQuantum couplingQuantum information010306 general physicsQuantum information scienceSystem busSpin-½PhysicsQuantum PhysicsHardware_MEMORYSTRUCTURESState transferAtomic and Molecular Physics and OpticsQuantum information quantum comunicationPhaseRouting (electronic design automation)and OpticsQuantum Physics (quant-ph)

description

Two different models for performing efficiently routing of a quantum state are presented. Both cases involve an XX spin chain working as data bus and additional spins that play the role of sender and receivers, one of which is selected to be the target of the quantum state transmission protocol via a coherent quantum coupling mechanism making use of local/global magnetic fields. Quantum routing is achieved, in the first of the models considered, by weakly coupling the sender and the receiver to the data bus. In the second model, strong magnetic fields acting on additional spins located between the sender/receiver and the data bus allow us to perform high fidelity routing.

10.1103/physreva.87.062309http://arxiv.org/abs/1301.5610