0000000000088455
AUTHOR
Gian Luca Giorgi
Quantum synchronization as a local signature of super- and subradiance
We study the relationship between the collective phenomena of super- and subradiance and spontaneous synchronization of quantum systems. To this aim we revisit the case of two detuned qubits interacting through a pure dissipative bosonic environment, which contains the minimal ingredients for our analysis. By using the Liouville formalism, we are able to find analytically the ultimate connection between these phenomena. We find that dynamical synchronization is due to the presence of longstanding coherence between the ground state of the system and the subradiant state. We finally show that, under pure dissipation, the emergence of spontaneous synchronization and of subradiant emission occu…
Unified view of correlations using the square-norm distance
The distance between a quantum state and its closest state not having a certain property has been used to quantify the amount of correlations corresponding to that property. This approach allows a unified view of the various kinds of correlations present in a quantum system. In particular, using relative entropy as a distance measure, total correlations can be meaningfully separated into a quantum part and a classical part thanks to an additive relation involving only the distances between states. Here we investigate a unified view of correlations using as a distance measure the square norm, which has already been used to define the so-called geometric quantum discord. We thus also consider…
Intermittent decoherence blockade
It has long been recognized that emission of radiation from atoms is not an intrinsic property of individual atoms themselves, but it is largely affected by the characteristics of the photonic environment and by the collective interaction among the atoms. A general belief is that preventing full decay and/or decoherence requires the existence of dark states, i.e., dressed light-atom states that do not decay despite the dissipative environment. Here, we show that, contrary to such a common wisdom, decoherence suppression can be intermittently achieved on a limited time scale, without the need for any dark state, when the atom is coupled to a chiral ring environment, leading to a highly non-e…
Topological Protection and Control of Quantum Markovianity
This article belongs to the Special Issue Topological Photonics.
Many-qubit quantum state transfer via spin chains
The transfer of an unknown quantum state, from a sender to a receiver, is one of the main requirements to perform quantum information processing tasks. In this respect, the state transfer of a single qubit by means of spin chains has been widely discussed, and many protocols aiming at performing this task have been proposed. Nevertheless, the state transfer of more than one qubit has not been properly addressed so far. In this paper, we present a modified version of a recently proposed quantum state transfer protocol [Phys. Rev. A 87, 062309 (2013)] to obtain a quantum channel for the transfer of two qubits. This goal is achieved by exploiting Rabi-like oscillations due to excitations induc…
Routing quantum information in spin chains
Two different models for performing efficiently routing of a quantum state are presented. Both cases involve an XX spin chain working as data bus and additional spins that play the role of sender and receivers, one of which is selected to be the target of the quantum state transmission protocol via a coherent quantum coupling mechanism making use of local/global magnetic fields. Quantum routing is achieved, in the first of the models considered, by weakly coupling the sender and the receiver to the data bus. In the second model, strong magnetic fields acting on additional spins located between the sender/receiver and the data bus allow us to perform high fidelity routing.
Genuine quantum and classical correlations in multipartite systems
PACS numbers: 03.67.Mn, 03.65.Ud
Intermittent decoherence blockade in a chiral ring environment
It has long been recognized that emission of radiation from atoms is not an intrinsic property of individual atoms themselves, but it is largely affected by the characteristics of the photonic environment and by the collective interaction among the atoms. A general belief is that preventing full decay and/or decoherence requires the existence of dark states, i.e., dressed light-atom states that do not decay despite the dissipative environment. Here, we show that, contrary to such a common wisdom, decoherence suppression can be intermittently achieved on a limited time scale, without the need for any dark state, when the atom is coupled to a chiral ring environment, leading to a highly non-e…