6533b7cffe1ef96bd1257d61

RESEARCH PRODUCT

Effect of Static Disorder in an Electron-Fabry Perot Interferometr with Two Quantum Scattering Centers

Francesco CiccarelloG. Massimo PalmaMichelangelo ZarconeVítor R. VieiraYasser Omar

subject

PhysicsCoupling constantQuantum PhysicsCondensed Matter - Mesoscale and Nanoscale PhysicsCondensed matter physicsSpinsScatteringFOS: Physical sciencesQuantum entanglementElectronCondensed Matter Physics01 natural sciencesIndustrial and Manufacturing EngineeringAtomic and Molecular Physics and Optics3. Good health010305 fluids & plasmasMesoscale and Nanoscale Physics (cond-mat.mes-hall)0103 physical sciencesCondensed Matter::Strongly Correlated ElectronsScattering theoryQuantum informationQuantum Physics (quant-ph)010306 general physicsInstrumentationFabry–Pérot interferometer

description

In a recent paper -- F. Ciccarello \emph{et al.}, New J. Phys. \textbf{8}, 214 (2006) -- we have demonstrated that the electron transmission properties of a one-dimensional (1D) wire with two identical embedded spin-1/2 impurities can be significantly affected by entanglement between the spins of the scattering centers. Such effect is of particular interest in the control of transmission of quantum information in nanostructures and can be used as a detection scheme of maximally entangled states of two localized spins. In this letter, we relax the constraint that the two magnetic impurities are equal and investigate how the main results presented in the above paper are affected by a static disorder in the exchange coupling constants of the impurities. Good robustness against deviation from impurity symmetry is found for both the entanglement dependent transmission and the maximally entangled states generation scheme.

http://hdl.handle.net/10447/16177