0000000000056695

AUTHOR

Vítor R. Vieira

showing 3 related works from this author

Effect of Static Disorder in an Electron-Fabry Perot Interferometr with Two Quantum Scattering Centers

2007

In a recent paper -- F. Ciccarello \emph{et al.}, New J. Phys. \textbf{8}, 214 (2006) -- we have demonstrated that the electron transmission properties of a one-dimensional (1D) wire with two identical embedded spin-1/2 impurities can be significantly affected by entanglement between the spins of the scattering centers. Such effect is of particular interest in the control of transmission of quantum information in nanostructures and can be used as a detection scheme of maximally entangled states of two localized spins. In this letter, we relax the constraint that the two magnetic impurities are equal and investigate how the main results presented in the above paper are affected by a static d…

PhysicsCoupling constantQuantum PhysicsCondensed Matter - Mesoscale and Nanoscale PhysicsCondensed matter physicsSpinsScatteringFOS: Physical sciencesQuantum entanglementElectronCondensed Matter Physics01 natural sciencesIndustrial and Manufacturing EngineeringAtomic and Molecular Physics and Optics3. Good health010305 fluids & plasmasMesoscale and Nanoscale Physics (cond-mat.mes-hall)0103 physical sciencesCondensed Matter::Strongly Correlated ElectronsScattering theoryQuantum informationQuantum Physics (quant-ph)010306 general physicsInstrumentationFabry–Pérot interferometer
researchProduct

Entanglement controlled single- electron transmittivity

2006

We consider a system consisting of single electrons moving along a 1D wire in the presence of two magnetic impurities. Such system shows strong analogies with a Fabry - Perot interferometer in which the impurities play the role of two mirrors with a quantum degree of freedom: the spin. We have analysed the electron transmittivity of the wire in the presence of entanglement between the impurity spins. The main result of our analysis is that, for suitable values of the electron momentum, there are two maximally entangled state of the impurity spins the first of which makes the wire transparent whatever the electron spin state while the other strongly inhibits the electron transmittivity. Such…

PhysicsQuantum PhysicsCondensed Matter - Mesoscale and Nanoscale PhysicsSpinsCondensed matter physicsFOS: Physical sciencesGeneral Physics and AstronomyObservableQuantum entanglementElectronCondensed Matter::Mesoscopic Systems and Quantum Hall Effect01 natural sciences010305 fluids & plasmasdecayMomentumImpurityMesoscale and Nanoscale Physics (cond-mat.mes-hall)0103 physical sciencesCondensed Matter::Strongly Correlated ElectronseffectsQuantum Physics (quant-ph)010306 general physicsSpin (physics)survival probabilityQuantum
researchProduct

Electron Fabry-Perot interferometer with two entangled magnetic impurities

2007

We consider a one-dimensional (1D) wire along which single conduction electrons can propagate in the presence of two spin-1/2 magnetic impurities. The electron may be scattered by each impurity via a contact-exchange interaction and thus a spin-flip generally occurs at each scattering event. Adopting a quantum waveguide theory approach, we derive the stationary states of the system at all orders in the electron-impurity exchange coupling constant. This allows us to investigate electron transmission for arbitrary initial states of the two impurity spins. We show that for suitable electron wave vectors, the triplet and singlet maximally entangled spin states of the impurities can respectively…

Statistics and ProbabilityQUANTUM WIRESQuantum decoherenceSpin statesFOS: Physical sciencesGeneral Physics and AstronomyElectron01 natural sciences010305 fluids & plasmasMesoscale and Nanoscale Physics (cond-mat.mes-hall)0103 physical sciencesSCATTERINGSinglet state010306 general physicsMathematical PhysicsPhysicsCoupling constantINTERFERENCEQuantum PhysicsCondensed matter physicsCondensed Matter - Mesoscale and Nanoscale PhysicsScatteringStatistical and Nonlinear Physics3. Good healthModeling and SimulationCondensed Matter::Strongly Correlated ElectronsQuantum Physics (quant-ph)Electron scatteringStationary state
researchProduct