6533b86ffe1ef96bd12cdd13

RESEARCH PRODUCT

Entanglement detection in hybrid optomechanical systems

Mauro PaternostroG. Massimo PalmaGabriele De Chiara

subject

Field (physics)FOS: Physical sciencesQuantum entanglementSquashed entanglement01 natural sciences010305 fluids & plasmaslaw.inventionlawQuantum mechanics0103 physical sciencesPoint (geometry)010306 general physicsQuantumCondensed Matter::Quantum GasesPhysicsQuantum PhysicsHybrid deviceCondensed Matter::OtherQuantum PhysicsAtomic and Molecular Physics and OpticsBose Einstein Condensate entanglement mesoscopic systemsQuantum Gases (cond-mat.quant-gas)BOSE-EINSTEIN CONDENSATE; OPTICAL CAVITYQuantum Physics (quant-ph)Condensed Matter - Quantum GasesBose–Einstein condensate

description

We study a device formed by a Bose Einstein condensate (BEC) coupled to the field of a cavity with a moving end-mirror and find a working point such that the mirror-light entanglement is reproduced by the BEC-light quantum correlations. This provides an experimentally viable tool for inferring mirror-light entanglement with only a limited set of assumptions. We prove the existence of tripartite entanglement in the hybrid device, persisting up to temperatures of a few milli-Kelvin, and discuss a scheme to detect it.

https://doi.org/10.1103/physreva.83.052324