0000000000338936
AUTHOR
Giuseppe Falci
Spin-echo entanglement protection from random telegraph noise
We analyze local spin-echo procedures to protect entanglement between two non-interacting qubits, each subject to pure-dephasing random telegraph noise. For superconducting qubits this simple model captures characteristic features of the effect of bistable impurities coupled to the device. An analytic expression for the entanglement dynamics is reported. Peculiar features related to the non-Gaussian nature of the noise already observed in the single qubit dynamics also occur in the entanglement dynamics for proper values of the ratio $g=v/\gamma$, between the qubit-impurity coupling strength and the switching rate of the random telegraph process, and of the separation between the pulses $\D…
Detector's quantum backaction effects on a mesoscopic conductor and fluctuation-dissipation relation
When measuring quantum mechanical properties of charge transport in mesoscopic conductors, backaction effects occur. We consider a measurement setup with an elementary quantum circuit, composed of an inductance and a capacitor, as detector of the current flowing in a nearby quantum point contact. A quantum Langevin equation for the detector variable including backaction effects is derived. Differences with the quantum Langevin equation obtained in linear response are pointed out. In this last case, a relation between fluctuations and dissipation is obtained, provided that an effective temperature of the quantum point contact is defined.
Geometric quantum computation with Josephson qubits
The quest for large scale integrability and flexibility has stimulated an increasing interest in designing quantum computing devices. A proposal based on small-capacitance Josephson junctions in the charge regime in which quantum gates are implemented by means of adiabatic geometric phases was discussed. The proposed works, are in the charge regime where the qubit is realized by two nearly degenerate charge states of a single electron box.
Dynamical entanglement-transfer for quantum information networks
A key element in the architecture of a quantum information processing network is a reliable physical interface between fields and qubits. We study a process of entanglement transfer engineering, where two remote qubits respectively interact with entangled two-mode continuous variable (CV) field. We quantify the entanglement induced in the qubit state at the expenses of the loss of entanglement in the CV system. We discuss the range of mixed entangled states which can be obtained with this set-up. Furthermore, we suggest a protocol to determine the residual entangling power of the light fields, inferring, thus, the entanglement left in the field modes which, after the interaction, are no lon…
Experimental on-demand recovery of entanglement by local operations within non-Markovian dynamics
In many applications entanglement must be distributed through noisy communication channels that unavoidably degrade it. Entanglement cannot be generated by local operations and classical communication (LOCC), implying that once it has been distributed it is not possible to recreate it by LOCC. Recovery of entanglement by purely local control is however not forbidden in the presence of non-Markovian dynamics, and here we demonstrate in two all-optical experiments that such entanglement restoration can even be achieved on-demand. First, we implement an open-loop control scheme based on a purely local operation, without acquiring any information on the environment; then, we use a closed-loop s…
Preserving entanglement and nonlocality in solid-state qubits by dynamical decoupling
In this paper we study how to preserve entanglement and nonlocality under dephasing produced by classical noise with large low-frequency components, as $1/f$ noise, by Dynamical Decoupling techniques. We first show that quantifiers of entanglement and nonlocality satisfy a closed relation valid for two independent qubits locally coupled to a generic environment under pure dephasing and starting from a general class of initial states. This result allows to assess the efficiency of pulse-based dynamical decoupling for protecting nonlocal quantum correlations between two qubits subject to pure-dephasing local random telegraph and $1/f$-noise. We investigate the efficiency of an "entanglement m…
Design of a Lambda system for population transfer in superconducting nanocircuits
The implementation of a Lambda scheme in superconducting artificial atoms could allow detec- tion of stimulated Raman adiabatic passage (STIRAP) and other quantum manipulations in the microwave regime. However symmetries which on one hand protect the system against decoherence, yield selection rules which may cancel coupling to the pump external drive. The tradeoff between efficient coupling and decoherence due to broad-band colored Noise (BBCN), which is often the main source of decoherence is addressed, in the class of nanodevices based on the Cooper pair box (CPB) design. We study transfer efficiency by STIRAP, showing that substantial efficiency is achieved for off-symmetric bias only i…
TRANSIENT DYNAMICS AND ASYMPTOTIC POPULATIONS IN A DRIVEN METASTABLE QUANTUM SYSTEM
The transient dynamics of a periodically driven metastable quantum system, interacting with a heat bath, is investigated. The time evolution of the populations, within the framework of the Feynman–Vernon influ- ence functional and in the discrete variable representation, is analyzed by varying the parameters of the external driving. The results display strong non-monotonic behaviour of the populations with respect to the driving frequency.
Dynamics of a Quantum Particle in Asymmetric Bistable Potential with Environmental Noise
In this work we analyze the dynamics of a quantum particle subject to an asymmetric bistable potential and interacting with a thermal reservoir. We obtain the time evolution of the population distributions in both energy and position eigenstates of the particle, for different values of the coupling strength with the thermal bath. The calculation is carried out using the Feynman-Vernon functional under the discrete variable representation.
The bistable potential: An archetype for classical and quantum systems
In this work we analyze the transient dynamics of three different classical and quantum systems. First, we consider a classical Brownian particle moving in an asymmetric bistable potential, subject to a multiplicative and additive noise source. We investigate the role of these two noise sources on the life time of the metastable state. A nonmonotonic behavior of the lifetime as a function of both additive and multiplicative noise intensities is found, revealing the phenomenon of noise enhanced stability. Afterward, by using a LotkaVolterra model, the dynamics of two competing species in the presence of Lévy noise sources is analyzed. Quasiperiodic oscillations and stochastic resonance pheno…
EFFECT OF LOW-FREQUENCY NOISE ON ADIABATIC PASSAGE IN A SUPERCONDUCTING NANOCIRCUIT
Recent experiments have demonstrated coherent phenomena in three-level systems based on superconducting nanocircuits. This opens the possibility to detect Stimulated Raman Adiabatic Passage (STIRAP) in artificial atoms. Low-fequency noise (often 1/f) is one of the main sources of decoherence in these systems, and we study its effect on the transfer efficiency. We propose a way to analyze low frequency fluctuations in terms of fictitious correlated fluctuations of external parameters. We discuss a specific implementation, namely the Quantronium setup of a Cooper-pair box, showing that optimizing the trade-off between efficient coupling and protection against noise may allow us to observe co…
Detection of Geometric Phases in Superconducting Nanocircuits
When a quantum mechanical system undergoes an adiabatic cyclic evolution it acquires a geometrical phase factor in addition to the dynamical one. This effect has been demonstrated in a variety of microscopic systems. Advances in nanotechnologies should enable the laws of quantum dynamics to be tested at the macroscopic level, by providing controllable artificial two-level systems (for example, in quantum dots and superconducting devices). Here we propose an experimental method to detect geometric phases in a superconducting device. The setup is a Josephson junction nanocircuit consisting of a superconducting electron box. We discuss how interferometry based on geometrical phases may be real…
Entanglement between two superconducting qubits via interaction with nonclassical radiation
We propose a scheme to physically interface superconducting nano-circuits and quantum optics. We address the transfer of quantum information between systems having different physical natures and defined in Hilbert spaces of different dimensions. In particular, we investigate the transfer of the entanglement initially in a non-classical state of a continuous-variable system to a pair of superconducting charge qubits. This set-up is able to drive an initially separable state of the qubits into an almost pure, highly entangled state suitable for quantum information processing.
Entanglement degradation in the solid state: Interplay of adiabatic and quantum noise
We study entanglement degradation of two non-interacting qubits subject to independent baths with broadband spectra typical of solid state nanodevices. We obtain the analytic form of the concurrence in the presence of adiabatic noise for classes of entangled initial states presently achievable in experiments. We find that adiabatic (low frequency) noise affects entanglement reduction analogously to pure dephasing noise. Due to quantum (high frequency) noise, entanglement is totally lost in a state-dependent finite time. The possibility to implement on-chip both local and entangling operations is briefly discussed.
Entanglement dynamics in superconducting qubits affected by local bistable impurities
We study the entanglement dynamics for two independent superconducting qubits each affected by a bistable impurity generating random telegraph noise (RTN) at pure dephasing. The relevant parameter is the ratio $g$ between qubit-RTN coupling strength and RTN switching rate, that captures the physics of the crossover between Markovian and non-Markovian features of the dynamics. For identical qubit-RTN subsystems, a threshold value $g_\mathrm{th}$ of the crossover parameter separates exponential decay and onset of revivals; different qualitative behaviors also show up by changing the initial conditions of the RTN. We moreover show that, for different qubit-RTN subsystems, when both qubits are …
Recovering entanglement by local operations
We investigate the phenomenon of bipartite entanglement revivals under purely local operations in systems subject to local and independent classical noise sources. We explain this apparent paradox in the physical ensemble description of the system state by introducing the concept of "hidden" entanglement, which indicates the amount of entanglement that cannot be exploited due to the lack of classical information on the system. For this reason this part of entanglement can be recovered without the action of non-local operations or back-transfer process. For two noninteracting qubits under a low-frequency stochastic noise, we show that entanglement can be recovered by local pulses only. We al…
Hidden entanglement in the presence of random telegraph dephasing noise
Entanglement dynamics of two noninteracting qubits, locally affected by random telegraph noise at pure dephasing, exhibits revivals. These revivals are not due to the action of any nonlocal operation, thus their occurrence may appear paradoxical since entanglement is by definition a nonlocal resource. We show that a simple explanation of this phenomenon may be provided by using the (recently introduced) concept of "hidden" entanglement, which signals the presence of entanglement that may be recovered with the only help of local operations.
Quantum state transfer in imperfect artificial spin networks
High-fidelity quantum computation and quantum state transfer are possible in short spin chains. We exploit a system based on a dispersive qubit-boson interaction to mimic XY coupling. In this model, the usually assumed nearest-neighbors coupling is no more valid: all the qubits are mutually coupled. We analyze the performances of our model for quantum state transfer showing how pre-engineered coupling rates allow for nearly optimal state transfer. We address a setup of superconducting qubits coupled to a microstrip cavity in which our analysis may be applied.
Hidden entanglement, system-environment information flow and non-Markovianity
It is known that entanglement dynamics of two noninteracting qubits, locally subjected to classical environments, may exhibit revivals. A simple explanation of this phenomenon may be provided by using the concept of hidden entanglement, which signals the presence of entanglement that may be recovered without the help of nonlocal operations. Here we discuss the link between hidden entanglement and the (non-Markovian) flow of classical information between the system and the environment.
Design of a lambda configuration in artificial coherent nanostructures
The implementation of a three-level Lambda System in artificial atoms would allow to perform advanced control tasks typical of quantum optics in the solid state realm, with photons in the $\mathrm{\mu m}$/mm range. However hardware constraints put an obstacle since protection from decoherence is often conflicting with efficient coupling to external fields. We address the problem of performing conventional STImulated Raman Adiabatic Passage (STIRAP) in the presence of low-frequency noise. We propose two strategies to defeat decoherence, based on "optimal symmetry breaking" and dynamical decoupling. We suggest how to apply to the different implementations of superconducting artificial atoms, …