6533b831fe1ef96bd129861e
RESEARCH PRODUCT
EFFECT OF LOW-FREQUENCY NOISE ON ADIABATIC PASSAGE IN A SUPERCONDUCTING NANOCIRCUIT
Davide ValentiBernardo SpagnoloGiuseppe FalciA. La CognataElisabetta PaladinoAntonio D'arrigoP. Caldarasubject
SuperconductivityPhysicsCouplingQuantum decoherenceCOOPER-PAIR BOX; STIRAP; NOISEPhysics and Astronomy (miscellaneous)Condensed matter physicsSTIRAP; quantronium; coherent transfer population; Zener transition; three-level system.three-level system.COOPER-PAIR BOXInfrasoundStimulated Raman adiabatic passageLow frequencyNoise (electronics)three-level systemSettore FIS/03 - Fisica Della MateriaNOISEZener transitionQuantum electrodynamicsSTIRAPAdiabatic processcoherent transfer populationquantroniumdescription
Recent experiments have demonstrated coherent phenomena in three-level systems based on superconducting nanocircuits. This opens the possibility to detect Stimulated Raman Adiabatic Passage (STIRAP) in artificial atoms. Low-fequency noise (often 1/f) is one of the main sources of decoherence in these systems, and we study its effect on the transfer efficiency. We propose a way to analyze low frequency fluctuations in terms of fictitious correlated fluctuations of external parameters. We discuss a specific implementation, namely the Quantronium setup of a Cooper-pair box, showing that optimizing the trade-off between efficient coupling and protection against noise may allow us to observe coherent population transfer in this nanodevice.
year | journal | country | edition | language |
---|---|---|---|---|
2011-01-01 |