0000000000338934

AUTHOR

Antonio D'arrigo

showing 11 related works from this author

Spin-echo entanglement protection from random telegraph noise

2014

We analyze local spin-echo procedures to protect entanglement between two non-interacting qubits, each subject to pure-dephasing random telegraph noise. For superconducting qubits this simple model captures characteristic features of the effect of bistable impurities coupled to the device. An analytic expression for the entanglement dynamics is reported. Peculiar features related to the non-Gaussian nature of the noise already observed in the single qubit dynamics also occur in the entanglement dynamics for proper values of the ratio $g=v/\gamma$, between the qubit-impurity coupling strength and the switching rate of the random telegraph process, and of the separation between the pulses $\D…

PhysicsSuperconductivityEntanglement dynamicsQuantum PhysicsBistabilityFOS: Physical sciencesConcurrenceQuantum entanglementQuantum PhysicsCondensed Matter Physics01 natural sciencesNoise (electronics)Settore FIS/03 - Fisica Della MateriaAtomic and Molecular Physics and Optics010305 fluids & plasmasOpen quantum systemQubitQuantum mechanics0103 physical sciencesSpin echoSuperconducting qubit010306 general physicsQuantum Physics (quant-ph)Telegraph processMathematical Physics
researchProduct

Experimental on-demand recovery of entanglement by local operations within non-Markovian dynamics

2015

In many applications entanglement must be distributed through noisy communication channels that unavoidably degrade it. Entanglement cannot be generated by local operations and classical communication (LOCC), implying that once it has been distributed it is not possible to recreate it by LOCC. Recovery of entanglement by purely local control is however not forbidden in the presence of non-Markovian dynamics, and here we demonstrate in two all-optical experiments that such entanglement restoration can even be achieved on-demand. First, we implement an open-loop control scheme based on a purely local operation, without acquiring any information on the environment; then, we use a closed-loop s…

non-Markovian dynamicsComputer scienceFOS: Physical sciencesMarkov processQuantum entanglementquantum entanglementTopologyArticleSettore FIS/03 - Fisica Della MateriaMultidisciplinary; quantum information; quantum entanglement; open quantum systemsEntanglementsymbols.namesakeNon Markovian dynamicsquantum informationOn demandquantum opticsQuantumQuantum networkLOCCQuantum PhysicsEntanglement entanglement recovery non-Markovian dynamicsMultidisciplinaryHidden entanglementTheoryofComputation_GENERALQuantum Physicsopen quantum systemsOutcome (probability)Dynamics (music)Hidden entanglement non-Markovian dynamics quantum optics quantum informationsymbolsQuantum Physics (quant-ph)entanglement recoveryScientific Reports
researchProduct

Preserving entanglement and nonlocality in solid-state qubits by dynamical decoupling

2014

In this paper we study how to preserve entanglement and nonlocality under dephasing produced by classical noise with large low-frequency components, as $1/f$ noise, by Dynamical Decoupling techniques. We first show that quantifiers of entanglement and nonlocality satisfy a closed relation valid for two independent qubits locally coupled to a generic environment under pure dephasing and starting from a general class of initial states. This result allows to assess the efficiency of pulse-based dynamical decoupling for protecting nonlocal quantum correlations between two qubits subject to pure-dephasing local random telegraph and $1/f$-noise. We investigate the efficiency of an "entanglement m…

Dynamical decouplingDephasingsuperconducting qubitFOS: Physical sciencesQuantum entanglementEntanglement; superconducting qubits; open quantum systems; quantum controlSquashed entanglementSUPERCONDUCTING CIRCUITSNoise (electronics)Settore FIS/03 - Fisica Della MateriaEntanglementQuantum nonlocalityQuantum mechanicsQuantumPhysicsQuantum Physicsopen quantum systemBELL INEQUALITYQuantum PhysicsCondensed Matter PhysicsElectronic Optical and Magnetic MaterialsQUANTUM-SYSTEMSQubitQuantum Physics (quant-ph)quantum controlSUPERCONDUCTING CIRCUITS; BELL INEQUALITY; QUANTUM-SYSTEMS
researchProduct

Design of a Lambda system for population transfer in superconducting nanocircuits

2013

The implementation of a Lambda scheme in superconducting artificial atoms could allow detec- tion of stimulated Raman adiabatic passage (STIRAP) and other quantum manipulations in the microwave regime. However symmetries which on one hand protect the system against decoherence, yield selection rules which may cancel coupling to the pump external drive. The tradeoff between efficient coupling and decoherence due to broad-band colored Noise (BBCN), which is often the main source of decoherence is addressed, in the class of nanodevices based on the Cooper pair box (CPB) design. We study transfer efficiency by STIRAP, showing that substantial efficiency is achieved for off-symmetric bias only i…

Quantum decoherenceStimulated Raman adiabatic passageFOS: Physical sciencesSINGLE COOPER PAIR ADIABATIC PASSAGE QUANTUM STATES FLUX QUBIT SPECTROSCOPY MOLECULES CIRCUIT ATOMS NOISE BOX01 natural sciencesNoise (electronics)Settore FIS/03 - Fisica Della Materia010305 fluids & plasmasSuperconductivity (cond-mat.supr-con)Quantum mechanics0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)010306 general physicsQuantumQuantum computerPhysicsCouplingQuantum PhysicsCondensed Matter - Mesoscale and Nanoscale PhysicsCondensed Matter - SuperconductivityCondensed Matter PhysicsElectronic Optical and Magnetic MaterialsColors of noiseCooper pairQuantum Physics (quant-ph)
researchProduct

EFFECT OF LOW-FREQUENCY NOISE ON ADIABATIC PASSAGE IN A SUPERCONDUCTING NANOCIRCUIT

2011

Recent experiments have demonstrated coherent phenomena in three-level systems based on superconducting nanocircuits. This opens the possibility to detect Stimulated Raman Adiabatic Passage (STIRAP) in artificial atoms. Low-fequency noise (often 1/f) is one of the main sources of decoherence in these systems, and we study its effect on the transfer efficiency. We propose a way to analyze low frequency fluctuations in terms of fictitious correlated fluctuations of external parameters. We discuss a specific implementation, namely the Quantronium setup of a Cooper-pair box, showing that optimizing the trade-off between efficient coupling and protection against noise may allow us to observe co…

SuperconductivityPhysicsCouplingQuantum decoherenceCOOPER-PAIR BOX; STIRAP; NOISEPhysics and Astronomy (miscellaneous)Condensed matter physicsSTIRAP; quantronium; coherent transfer population; Zener transition; three-level system.three-level system.COOPER-PAIR BOXInfrasoundStimulated Raman adiabatic passageLow frequencyNoise (electronics)three-level systemSettore FIS/03 - Fisica Della MateriaNOISEZener transitionQuantum electrodynamicsSTIRAPAdiabatic processcoherent transfer populationquantronium
researchProduct

Entanglement degradation in the solid state: Interplay of adiabatic and quantum noise

2010

We study entanglement degradation of two non-interacting qubits subject to independent baths with broadband spectra typical of solid state nanodevices. We obtain the analytic form of the concurrence in the presence of adiabatic noise for classes of entangled initial states presently achievable in experiments. We find that adiabatic (low frequency) noise affects entanglement reduction analogously to pure dephasing noise. Due to quantum (high frequency) noise, entanglement is totally lost in a state-dependent finite time. The possibility to implement on-chip both local and entangling operations is briefly discussed.

PhysicsQuantum PhysicsQuantum decoherenceCondensed Matter - Mesoscale and Nanoscale PhysicsQuantum noiseFOS: Physical sciencesQuantum entanglementQuantum PhysicsSquashed entanglementSettore FIS/03 - Fisica Della MateriaAtomic and Molecular Physics and OpticsQuantum electrodynamicsQuantum mechanicsQubitMesoscale and Nanoscale Physics (cond-mat.mes-hall)Coincidence countingSuperconducting qubit entanglement open quantum systemsW stateAdiabatic processQuantum Physics (quant-ph)
researchProduct

Entanglement dynamics in superconducting qubits affected by local bistable impurities

2012

We study the entanglement dynamics for two independent superconducting qubits each affected by a bistable impurity generating random telegraph noise (RTN) at pure dephasing. The relevant parameter is the ratio $g$ between qubit-RTN coupling strength and RTN switching rate, that captures the physics of the crossover between Markovian and non-Markovian features of the dynamics. For identical qubit-RTN subsystems, a threshold value $g_\mathrm{th}$ of the crossover parameter separates exponential decay and onset of revivals; different qualitative behaviors also show up by changing the initial conditions of the RTN. We moreover show that, for different qubit-RTN subsystems, when both qubits are …

BistabilityDephasingCrossoverquantum statistical methodEntanglement measures witnesses and other characterizations Decoherence; open systems; quantum statistical methods; Quantum computation architectures and implementationsFOS: Physical sciencesQuantum computation architectures and implementationsQuantum entanglement01 natural sciencesNoise (electronics)Settore FIS/03 - Fisica Della Materia010305 fluids & plasmasComputer Science::Emerging TechnologiesQuantum mechanics0103 physical sciencesExponential decay010306 general physicsMathematical PhysicsEntanglement measures witnesses and other characterizations DecoherencePhysicsQuantum PhysicsQuantum PhysicsCondensed Matter PhysicsAtomic and Molecular Physics and OpticsAmplitudeQubitopen systemQuantum Physics (quant-ph)
researchProduct

Recovering entanglement by local operations

2012

We investigate the phenomenon of bipartite entanglement revivals under purely local operations in systems subject to local and independent classical noise sources. We explain this apparent paradox in the physical ensemble description of the system state by introducing the concept of "hidden" entanglement, which indicates the amount of entanglement that cannot be exploited due to the lack of classical information on the system. For this reason this part of entanglement can be recovered without the action of non-local operations or back-transfer process. For two noninteracting qubits under a low-frequency stochastic noise, we show that entanglement can be recovered by local pulses only. We al…

Quantum information; Entanglement; Decoherence; Open quantum systemsQuantum PhysicsQuantum informationComputer scienceCondensed Matter - SuperconductivityQuantum information; Entanglement; Open quantum systemsGeneral Physics and AstronomyFOS: Physical sciencesQuantum entanglementQuantum PhysicsDecoherenceAction (physics)Settore FIS/03 - Fisica Della MateriaOpen quantum systemsSuperconductivity (cond-mat.supr-con)EntanglementNoiseQubitBipartite graphStatistical physicsQuantum Physics (quant-ph)
researchProduct

Hidden entanglement in the presence of random telegraph dephasing noise

2012

Entanglement dynamics of two noninteracting qubits, locally affected by random telegraph noise at pure dephasing, exhibits revivals. These revivals are not due to the action of any nonlocal operation, thus their occurrence may appear paradoxical since entanglement is by definition a nonlocal resource. We show that a simple explanation of this phenomenon may be provided by using the (recently introduced) concept of "hidden" entanglement, which signals the presence of entanglement that may be recovered with the only help of local operations.

PhysicsLocal OperationsQuantum PhysicsStatistical Mechanics (cond-mat.stat-mech)DephasingFOS: Physical sciencesQuantum entanglementQuantum PhysicsCondensed Matter PhysicsNoise (electronics)Settore FIS/03 - Fisica Della MateriaAtomic and Molecular Physics and OpticsAction (physics)EntanglementOpen quantum systemQuantum mechanicsQubitQuantum Physics (quant-ph)Condensed Matter - Statistical MechanicsMathematical Physics
researchProduct

Hidden entanglement, system-environment information flow and non-Markovianity

2014

It is known that entanglement dynamics of two noninteracting qubits, locally subjected to classical environments, may exhibit revivals. A simple explanation of this phenomenon may be provided by using the concept of hidden entanglement, which signals the presence of entanglement that may be recovered without the help of nonlocal operations. Here we discuss the link between hidden entanglement and the (non-Markovian) flow of classical information between the system and the environment.

Quantum PhysicsPhysics and Astronomy (miscellaneous)Computer scienceFOS: Physical sciencesClassical environmentQuantum entanglementQuantum Physicsmemory effectsSettore FIS/03 - Fisica Della MateriaFlow (mathematics)Simple (abstract algebra)Qubitsystem-environment correlationInformation flow (information theory)Statistical physicsLink (knot theory)system-environment correlationsQuantum Physics (quant-ph)Classical environments
researchProduct

DECAY OF NONLOCALITY DUE TO ADIABATIC AND QUANTUM NOISE IN THE SOLID STATE

2010

We study the decay of quantum nonlocality, identified by the violation of the Clauser-Horne-Shimony-Holt (CHSH) Bell inequality, for two noninteracting Josephson qubits subject to independent baths with broadband spectra typical of solid state nanodevices. The bath noise can be separated in an adiabatic (low-frequency) and in a quantum (high-frequency) part. We point out the qualitative different effects on quantum nonlocal correlations induced by adiabatic and quantum noise. A quantitaive analysis is performed for typical noise figures in Josephson systems. Finally we compare, for this system, the dynamics of nonlocal correlations and of entanglement.

Josephson charge qubitsPhysicsQuantum Physicsopen quantum systemPhysics and Astronomy (miscellaneous)Quantum noiseFOS: Physical sciencesopen quantum systemsQuantum PhysicsQuantum entanglementNonlocality; open quantum systems; Josephson charge qubitsNoise (electronics)Settore FIS/03 - Fisica Della MateriaQuantum nonlocalityBell's theoremQubitQuantum mechanicsNonlocalityQuantum Physics (quant-ph)Adiabatic processQuantumInternational Journal of Quantum Information
researchProduct