Search results for "cells"

showing 10 items of 7920 documents

Antiproliferative effect of plant sterols at colonic concentrations on Caco-2 cells

2017

Abstract Plant sterols (PS) have been incorporated to foods due to their cholesterol-lowering effect. Because of their low intestinal absorption (0.5–2%), they can reach the colon and exert local actions. The aim of this study was to evaluate the antiproliferative effect of individual (β-sitosterol, campesterol and stigmasterol) and combined PS in colon cancer cells (Caco-2) at human colonic concentrations after simulated gastrointestinal digestion of a PS enriched milk-based fruit beverage. β-Sitosterol, campesterol and stigmasterol induced significant cell viability reduction (13–59% vs control), but only stigmasterol produced an overproduction of reactive oxygen species (92% vs control).…

0301 basic medicineCell cycle checkpointCampesterolMedicine (miscellaneous)BiologyPharmacologyPlant sterolsIntestinal absorption03 medical and health scienceschemistry.chemical_compound0302 clinical medicineTX341-641Viability assayCaco-2 cellsAntiproliferative effectchemistry.chemical_classificationReactive oxygen species030109 nutrition & dieteticsNutrition and DieteticsStigmasterolCytostatic effectNutrition. Foods and food supplyCell cycleColon cancerchemistryBiochemistryCaco-2030220 oncology & carcinogenesisFood ScienceJournal of Functional Foods
researchProduct

CHK1 inhibitor sensitizes resistant colorectal cancer stem cells to nortopsentin

2021

Summary Limited therapeutic options are available for advanced colorectal cancer (CRC). Herein, we report that exposure to a neo-synthetic bis(indolyl)thiazole alkaloid analog, nortopsentin 234 (NORA234), leads to an initial reduction of proliferative and clonogenic potential of CRC sphere cells (CR-CSphCs), followed by an adaptive response selecting the CR-CSphC-resistant compartment. Cells spared by the treatment with NORA234 express high levels of CD44v6, associated with a constitutive activation of Wnt pathway. In CR-CSphC-based organoids, NORA234 causes a genotoxic stress paralleled by G2-M cell cycle arrest and activation of CHK1, driving the DNA damage repair of CR-CSphCs, regardless…

0301 basic medicineCell cycle checkpointColorectal cancerScienceSettore MED/50 - Scienze Tecniche Mediche Applicate02 engineering and technologyGenotoxic StressArticleMolecular Physiology03 medical and health sciencesSettore MED/04 - PATOLOGIA GENERALERabusertibmedicineClonogenic assayCancerMultidisciplinarybusiness.industryQWnt signaling pathwayDrugsCancerCell Biology021001 nanoscience & nanotechnologymedicine.disease030104 developmental biologyCancer researchSettore MED/46 - Scienze Tecniche Di Medicina Di LaboratorioStem cell0210 nano-technologybusinesscolorectal cancer cancer stem cells alkaloids DNA damage repair CHK1.iScience
researchProduct

Physiological concentrations of phytosterols enhance the apoptotic effects of 5-fluorouracil in colon cancer cells

2018

Abstract Combining natural products as co-adjuvants in 5-fluorouracil (5-FU) chemotherapy might enhance the effectiveness of 5-FU by avoiding a high dosage and/or reducing treatment times. We explored the anticancer efficacy of the phytosterols (PS) at concentrations achievable in the human colon, as well as their potential as sensitizing agents of human colon cancer cells (Caco-2 and HT-29) to 5-FU treatment. Cells proliferation, combination index, cell cycle, apoptosis, caspases activation, ROS production, and ΔΨm were determined. Co-treatment (PS+5-FU) had an antiproliferative additive effect, and moreover, in general a significantly improved efficacy was observed on cell cycle arrest at…

0301 basic medicineCell cycle checkpointColorectal cancermedicine.medical_treatmentMedicine (miscellaneous)ApoptosisCell cycle03 medical and health sciences0302 clinical medicineIn vivomedicine5-fluorouracilTX341-641Colon cancer cellsCaspaseChemotherapyNutrition and DieteticsbiologyNutrition. Foods and food supplyChemistryPhytosterolsCell cyclemedicine.disease030104 developmental biologyApoptosisFluorouracil030220 oncology & carcinogenesisCancer researchbiology.proteinDrug sensitivityFood Sciencemedicine.drugJournal of Functional Foods
researchProduct

PTP1B phosphatase as a novel target of oleuropein activity in MCF-7 breast cancer model.

2019

Phosphatase PTP1B has become a therapeutic target for the treatment of type 2-diabetes, whereas recent studies have revealed that PTP1B plays a pivotal role in pathophysiology and development of breast cancer. Oleuropein is a natural, phenolic compound with anticancer activity. The aim of this study was to address the question whether PTP1B constitutes a target for oleuropein in breast cancer MCF-7 cells. The cellular MCF-7 breast cancer model was used in the study. The experiments were performed using cellular viability tests, Elisa assays, immunoprecipitation, flow cytometry analyses and computer modelling. Herein, we evidenced that the reduced activity of phosphatase PTP1B after treatmen…

0301 basic medicineCell cycle checkpointImmunoprecipitationCell Survivalmedicine.medical_treatmentPhosphataseIridoid GlucosidesAntineoplastic AgentsBreast NeoplasmsAdenocarcinomaMolecular Dynamics SimulationToxicologyFlow cytometry03 medical and health scienceschemistry.chemical_compoundbreast cancer0302 clinical medicineBreast cancerOleuropeinmedicineHumansPTP1B phosphataseIridoidsskin and connective tissue diseasesSettore CHIM/02 - Chimica FisicaCell ProliferationOleuropeinProtein Tyrosine Phosphatase Non-Receptor Type 1MCF-7 cellmedicine.diagnostic_testAnticancer therapyGeneral Medicinemedicine.disease030104 developmental biologychemistryMCF-7Settore CHIM/03 - Chimica Generale E Inorganica030220 oncology & carcinogenesisSettore BIO/14 - FarmacologiaCancer researchMCF-7 CellsAdjuvanthormones hormone substitutes and hormone antagonistsToxicology in vitro : an international journal published in association with BIBRA
researchProduct

Design, synthesis, and biological evaluation of a new class of benzo[b]furan derivatives as antiproliferative agents, with in silico predicted antitu…

2018

A new series of 3-benzoylamino-5-(1H-imidazol-4-yl)methylaminobenzo[b]furans were synthesized and screened as antitumor agents. As a general trend, tested compounds showed concentration-dependent antiproliferative activity against HeLa and MCF-7 cancer cell lines, exhibiting GI50 values in the low micromolar range. In most cases, insertion of a methyl substituent on the imidazole moiety improved the antiproliferative activity. Therefore, methyl-imidazolyl-benzo[b]furans compounds were tested in cell cycle perturbation experiments, producing cell cycle arrest with proapoptotic effects. Their core similarity to known colchicine binding site binders led us to further study the structure featur…

0301 basic medicineCell cycle checkpointinduced fit docking studieantitubulin agents01 natural sciencesBiochemistryHeLa and MCF-7 cell linesHeLachemistry.chemical_compoundTubulinFuranDrug DiscoveryImidazoleMoietybiologyHeLa and MCF-7 cell lineG2/M phaseTubulin ModulatorsMolecular Docking SimulationAntiproliferative AgentsMCF-7 CellsMolecular MedicineVLAK protocolantitubulin agentStereochemistryIn silicoSubstituent3-benzoylamino-5-(1H-imidazol-4-yl)methylaminobenzo[b]furansAntineoplastic Agentsinduced fit docking studiesantitumor agents03 medical and health sciencesHumanscolchicine binding siteBenzofuransCell ProliferationPharmacologyBinding Sites010405 organic chemistryOrganic ChemistryCell Cycle Checkpoints3-benzoylamino-5-(1H-imidazol-4-yl)methylaminobenzo[b]furanbiology.organism_classification0104 chemical sciencesProtein Structure Tertiary030104 developmental biologychemistryantitumor agentDrug DesignColchicineHeLa Cells
researchProduct

Human Dental Pulp Stem Cells Exhibit Different Biological Behaviours in Response to Commercial Bleaching Products

2018

The purpose of this study was to evaluate the diffusion capacity and the biological effects of different bleaching products on human dental pulp stem cells (hDPSCs). The bleaching gel was applied for 90, 30 or 15 min to enamel/dentine discs that adapted in an artificial chamber. The diffusion of hydrogen peroxide (HP) was analysed by fluorometry and the diffusion products were applied to hDPSCs. Cell viability, cell migration and cell morphology assays were performed using the eluates of diffusion products. Finally, cell apoptosis and the expression of mesenchymal stem cell markers were analysed by flow cytometry. Statistical analysis was performed using analysis of variance and Kruskal&nda…

0301 basic medicineCell morphologylcsh:TechnologyArticleFlow cytometry03 medical and health scienceschemistry.chemical_compound0302 clinical medicinestomatognathic systemstem cellsDental pulp stem cellsmedicineGeneral Materials ScienceViability assaylcsh:MicroscopyHydrogen peroxidelcsh:QC120-168.85bleaching productslcsh:QH201-278.5Enamel paintmedicine.diagnostic_testlcsh:TMesenchymal stem celldiffusion030206 dentistryMolecular biologystomatognathic diseases030104 developmental biologychemistrylcsh:TA1-2040visual_artvisual_art.visual_art_mediumcytotoxicitylcsh:Descriptive and experimental mechanicslcsh:Electrical engineering. Electronics. Nuclear engineeringStem celldental pulplcsh:Engineering (General). Civil engineering (General)lcsh:TK1-9971Materials
researchProduct

Bioenergetic Failure in Rat Oligodendrocyte Progenitor Cells Treated with Cerebrospinal Fluid Derived from Multiple Sclerosis Patients

2017

In relapsing-remitting multiple sclerosis (RRMS) subtype, the patient's brain itself is capable of repairing the damage, remyelinating the axon and recovering the neurological function. Cerebrospinal fluid (CSF) is in close proximity with brain parenchyma and contains a host of proteins and other molecules, which influence the cellular physiology, that may balance damage and repair of neurons and glial cells. The purpose of this study was to determine the pathophysiological mechanisms underpinning myelin repair in distinct clinical forms of MS and neuromyelitis optica (NMO) patients by studying the effect of diseased CSF on glucose metabolism and ATP synthesis. A cellular model with primary…

0301 basic medicineCell physiologyglucose metabolismneuromyelitis opticaTransferrin receptorBiologymultiple sclerosiscerebrospinal fluidlcsh:RC321-571myelin repair03 medical and health sciencesCellular and Molecular NeuroscienceMyelin0302 clinical medicineCerebrospinal fluidGene expressionmedicineAxonlcsh:Neurosciences. Biological psychiatry. NeuropsychiatryOriginal ResearchMultiple sclerosisoligodendrocyte progenitor cellsmedicine.disease3. Good health030104 developmental biologymedicine.anatomical_structureHypoxanthine-guanine phosphoribosyltransferaseImmunologyCancer researchgene expression030217 neurology & neurosurgeryNeuroscienceFrontiers in Cellular Neuroscience
researchProduct

The Stalk Domain of NKp30 Contributes to Ligand Binding and Signaling of a Preassembled NKp30-CD3ζ Complex

2016

The natural cytotoxicity receptor (NCR) NKp30 (CD337) is a key player for NK cell immunosurveillance of infections and cancer. The molecular details of ligand recognition and its connection to CD3ζ signaling remain unsolved. Here, we show that the stalk domain (129KEHPQLGAGTVLLLR143) of NKp30 is very sensitive to sequence alterations, as mutations lead to impaired ligand binding and/or signaling capacity. Surprisingly, the stalk domains of NKp30 and NKp46, another NCR employing CD3ζ for signaling, were not exchangeable without drastic deficiencies in folding, plasma membrane targeting, and/or ligand-induced receptor signaling. Further mutational studies, N-glycosylation mapping, and plasma …

0301 basic medicineCell signalingCD3 ComplexImmunologyProtein domainBiologyCD3 ComplexBiochemistryCell membraneMice03 medical and health sciencesProtein DomainsCell surface receptormedicineAnimalsHumansMolecular BiologyNatural Cytotoxicity Triggering Receptor 3Natural Cytotoxicity Triggering Receptor 1Cell MembraneCell BiologyLigand (biochemistry)Cell biology030104 developmental biologymedicine.anatomical_structureMembrane proteinBiochemistrySignal transductionHeLa CellsSignal TransductionJournal of Biological Chemistry
researchProduct

EpCAM duality becomes this molecule in a new Dr. Jekyll and Mr. Hyde tale.

2018

EpCAM, known as an epithelial cell adhesion molecule, plays an essential role in cell adhesion, migration, metastasis and cell signalling. Rather than acting as an apoptosis antagonist, it induces cellular proliferation that impacts the cell cycle, and as a signalling transducer it uses and enhances the Wnt pathway, which is significantly relevant in cell renewal and cancer. EpCAM has become a marker of circulating tumour cells (CTCs) in lung cancer due to its specificity, and its high and stable expression level. Recent findings have allowed us to relearn and discover EpCAM again as a CSCs marker by demonstrating its role in human epithelial cancer progression. In line with this, the focus…

0301 basic medicineCell signalingEpithelial-Mesenchymal Transitionlaw.inventionMetastasis03 medical and health scienceschemistry.chemical_compound0302 clinical medicinelawCancer stem cellAntigens NeoplasmCell Line TumorNeoplasmsmedicineCell AdhesionAnimalsHumansCell Proliferationbusiness.industryWnt signaling pathwayCancerEpithelial cell adhesion moleculeHematologyCell cyclemedicine.diseaseEpithelial Cell Adhesion MoleculeNeoplastic Cells Circulating030104 developmental biologyOncologychemistry030220 oncology & carcinogenesisCancer researchSuppressorbusinessSignal TransductionCritical reviews in oncology/hematology
researchProduct

Evaluation of Planar-Cell-Polarity Phenotypes in Ciliopathy Mouse Mutant Cochlea

2016

In recent years, primary cilia have emerged as key regulators in development and disease by influencing numerous signaling pathways. One of the earliest signaling pathways shown to be associated with ciliary function was the non-canonical Wnt signaling pathway, also referred to as planar cell polarity (PCP) signaling. One of the best places in which to study the effects of planar cell polarity (PCP) signaling during vertebrate development is the mammalian cochlea. PCP signaling disruption in the mouse cochlea disrupts cochlear outgrowth, cellular patterning and hair cell orientation, all of which are affected by cilia dysfunction. The goal of this protocol is to describe the analysis of PCP…

0301 basic medicineCell signalingGeneral Chemical EngineeringStereocilia (inner ear)Cochlear ductBiologyGeneral Biochemistry Genetics and Molecular BiologyStereociliaMice03 medical and health sciencesHair Cells AuditorymedicineAnimalsCochleaGeneral Immunology and MicrobiologyGeneral NeuroscienceCiliumWnt signaling pathwayCell PolarityCochlear DuctEmbryo Mammalianmedicine.diseaseImmunohistochemistryCiliopathiesCochleaCell biologyDisease Models AnimalCiliopathyPhenotype030104 developmental biologymedicine.anatomical_structureMicroscopy Electron ScanningMedicinesense organsHair cellSignal TransductionJournal of Visualized Experiments
researchProduct