Search results for "channeling"
showing 7 items of 7 documents
Ethanol cycle in an ethanologenic bacterium
2002
AbstractA novel redox cycle is suggested, performing interconversion between acetaldehyde and ethanol in aerobically growing ethanologenic bacterium Zymomonas mobilis. It is formed by the two alcohol dehydrogenase (ADH) isoenzymes simultaneously catalyzing opposite reactions. ADH I is catalyzing acetaldehyde reduction. The local reactant ratio at its active site probably is shifted towards ethanol synthesis due to direct channeling of NADH from glycolysis. ADH II is oxidizing ethanol. The net result of the cycle operation is NADH shuttling from glycolysis to the membrane respiratory chain, and ensuring flexible distribution of reducing equivalents between the ADH reaction and respiration.
Defect reactions of implanted Li in ZnSe observed by β-NMR
2001
Abstract Using β-radiation detected nuclear magnetic resonance (β-NMR), we investigated the microscopic behavior of implanted 8 Li in nominally undoped ZnSe crystals. From the temperature-dependent amplitudes of high-resolution NMR spectra we conclude a gradual interstitial-to-substitutional site change between 200 and 350 K . This is in accordance with earlier emission channeling results. We argue that this conversion proceeds via Lii++VZn2−→LiZn− and involves implantation related Zn vacancies.
New Capabilities of the FLUKA Multi-Purpose Code
2022
We would like to deeply thank the CERN Knowledge Transfer and Legal Service teams for their essential and extended support. Our appreciation also goes to the FLUKA.CERN Collaboration Board members for their strong commitment.
Steering of a Sub-GeV electron beam through planar channeling enhanced by rechanneling
2014
We report the observation of efficient steering of a 855 MeV electron beam at MAMI (MAinzer MIkrotron) facilities by means of planar channeling and volume reflection in a bent silicon crystal. A $30.5\text{ }\text{ }\ensuremath{\mu}\mathrm{m}$ thick plate of (211) oriented Si was bent to cause quasimosaic deformation of the (111) crystallographic planes, which were used for coherent interaction with the electron beam. The experimental results are analogous to those recorded some years ago at energy higher than 100 GeV, which is the only comparable study to date. Monte Carlo simulations demonstrated that rechanneling plays a considerable role in a particle's dynamics and hinders the spoiling…
Progress towards the first measurement of charm baryon dipole moments
2021
Electromagnetic dipole moments of short-lived particles are sensitive to physics within and beyond the Standard Model of particle physics but have not been accessible experimentally to date. To perform such measurements it has been proposed to exploit the spin precession of channeled particles in bent crystals at the LHC. Progress that enables the first measurement of charm baryon dipole moments is reported. In particular, the design and characterization on beam of silicon and germanium bent crystal prototypes, the optimization of the experimental setup, and advanced analysis techniques are discussed. Sensitivity studies show that first measurements of $\Lambda_c^+$ and $\Xi_c^+$ baryon dip…
Determination of electronic stopping powers of 0.05–1MeV/u 131Xe ions in C-, Ni- and Au-absorbers with calorimetric low temperature detectors
2017
Abstract A new experimental system for precise determination of electronic stopping powers of heavy ions has been set up at the accelerator laboratory of the University of Jyvaskyla. The new setup, combining an established B-ToF system and an array of calorimetric low temperature detectors (CLTDs), has been used for the determination of electronic stopping powers of 0.05–1 MeV/u 131Xe ions in carbon, nickel and gold. Thereby advantage of the improved linearity and energy resolution of CLTDs as compared to the previously used ionization detector was taken to reduce energy calibration errors and to increase sensitivity for the energy loss determination, in particular at very low energies. The…
Metabolic Adaptation and Protein Complexes in Prokaryotes.
2012
Protein complexes are classified and have been charted in several large-scale screening studies in prokaryotes. These complexes are organized in a factory-like fashion to optimize protein production and metabolism. Central components are conserved between different prokaryotes; major complexes involve carbohydrate, amino acid, fatty acid and nucleotide metabolism. Metabolic adaptation changes protein complexes according to environmental conditions. Protein modification depends on specific modifying enzymes. Proteins such as trigger enzymes display condition-dependent adaptation to different functions by participating in several complexes. Several bacterial pathogens adapt rapidly to intrace…