Search results for "chaperone"
showing 10 items of 249 documents
Lipid chaperones and associated diseases: a group of chaperonopathies defining a new nosological entity with implications for medical research and pr…
2020
AbstractFatty acid–binding proteins (FABPs) are lipid chaperones assisting in the trafficking of long-chain fatty acids with functions in various cell compartments, including oxidation, signaling, gene-transcription regulation, and storage. The various known FABP isoforms display distinctive tissue distribution, but some are active in more than one tissue. Quantitative and/or qualitative changes of FABPs are associated with pathological conditions. Increased circulating levels of FABPs are biomarkers of disorders such as obesity, insulin resistance, cardiovascular disease, and cancer. Deregulated expression and malfunction of FABPs can result from genetic alterations or posttranslational mo…
Histopathology of Skeletal Muscle in a Distal Motor Neuropathy Associated with a Mutant CCT5 Subunit: Clues for Future Developments to Improve Differ…
2023
Genetic chaperonopathies are rare but, because of misdiagnosis, there are probably more cases than those that are recorded in the literature and databases. This occurs because practitioners are generally unaware of the existence and/or the symptoms and signs of chaperonopathies. It is necessary to educate the medical community about these diseases and, with research, to unveil their mechanisms. The structure and functions of various chaperones in vitro have been studied, but information on the impact of mutant chaperones in humans, in vivo, is scarce. Here, we present a succinct review of the most salient abnormalities of skeletal muscle, based on our earlier report of a patient who carried…
GroEL and the maintenance of bacterial endosymbiosis
2004
Many eukaryotic organisms have symbiotic associations with obligate intracellular bacteria. The clonal transmission of endosymbionts between host generations should lead to the irreversible fixation of slightly deleterious mutations in their non-recombinant genome by genetic drift. However, the stability of endosymbiosis indicates that some mechanism is involved in the amelioration of the effects of these mutations. We propose that the chaperone GroEL was involved in the acquisition of an endosymbiotic lifestyle not only by means of its over-production, as proposed by Moran, but also by its adaptive evolution mediated by positive selection to improve the interaction with the unstable endosy…
Hsp90 dictates viral sequence space by balancing the evolutionary tradeoffs between protein stability, aggregation and translation rate
2017
AbstractAcquisition of mutations is central to evolution but the detrimental effects of most mutations on protein folding and stability limit protein evolvability. Molecular chaperones, which suppress aggregation and facilitate polypeptide folding, are proposed to promote sequence diversification by buffering destabilizing mutations. However, whether and how chaperones directly control protein evolution remains poorly understood. Here, we examine the effect of reducing the activity of the key eukaryotic chaperone Hsp90 on poliovirus evolution. Contrary to predictions of a buffering model, inhibiting Hsp90 increases population sequence diversity and promotes accumulation of mutations reducin…
Role for calnexin and N-linked glycosylation in the assembly and secretion of hepatitis B virus middle envelope protein particles.
1998
ABSTRACT Unlike those of the S and the L envelope proteins, the functional role of the related M protein in the life cycle of the hepatitis B virus (HBV) is less understood. We now demonstrate that a single N glycan, specific for M, is required for efficient secretion of M empty envelope particles. Moreover, this glycan mediates specific association of M with the chaperone calnexin. Conversely, the N glycan, common to all three envelope proteins, is involved neither in calnexin binding nor in subviral particle release. As proper folding and trafficking of M need the assistance of the chaperone, the glycan-dependent association of M with calnexin may thus play a crucial role in the assembly …
Role of heme oxygenase-1 (HSP32) and HSP90 in glioblastoma
2017
Glioblastoma (GBM) is the most common and malignant primary brain tumor in adults. The current treatment regimes for glioblastoma demonstrated a low efficiency and offer a poor prognosis. Advancements in conventional treatment strategies have only yielded modest improvements in overall survival. The heat shockproteins, heme oxygenase-1 (HO-1) and Hsp90, serve these pivotal roles in tumor cells and have been identified as effective targets for developing therapeutics. This topic review summarizes the current preclinical and clinical evidences and rationale to define the potential of HO-1 and Hsp90 in GBM progression and chemoresistance.
Sequence-Specific Repression of Cotranslational Translocation of the Hepatitis B Virus Envelope Proteins Coincides with Binding of Heat Shock Protein…
1997
AbstractThe large L envelope protein of the hepatitis B virus has the peculiar capacity to adopt two transmembrane topologies. The N-terminal preS domain of L initially remains in the cytosol while the S domain is cotranslationally inserted into the endoplasmic reticulum membrane. The preS region of about half of the L molecules is posttranslationally translocated to the lumenal space. We now demonstrate that the repression of cotranslational translocation of preS is conferred by a preS1-specific sequence. By analysis of L deletion mutants, the cytosolic anchorage determinant was mapped to amino acid sequence 70 to 94 of L. The intrinsic potential of this determinant to suppress cotranslati…
Chaperones Involved in Hepatitis B Virus Morphogenesis
1999
Little is known about host cell factors necessary for hepatitis B virus (HBV) assembly which involves envelopment of cytosolic nucleocapsids by the S, M and L transmembrane viral envelope proteins and subsequent budding into intraluminal cisternae. Central to virogenesis is the L protein that mediates hepatocyte receptor binding and envelopment of capsids. To serve these topologically conflicting roles, L protein exhibits an unusual dual membrane topology, disposing its N-terminal preS domain inside and outside of the virion lipid envelope. The mixed topology is achieved by posttranslational preS translocation of about half of the L protein molecules across a post-endoplasmic reticulum memb…
Mammalian BiP controls posttranslational ER translocation of the hepatitis B virus large envelope protein.
2008
AbstractThe hepatitis B virus L protein forms a dual topology in the endoplasmic reticulum (ER) via a process involving cotranslational membrane integration and subsequent posttranslational translocation of its preS subdomain. Here, we show that preS posttranslocation depends on the action of the ER chaperone BiP. To modulate the in vivo BiP activity, we designed an approach based on overexpressing its positive and negative regulators, ER-localized DnaJ-domain containing protein 4 (ERdj4) and BiP-associated protein (BAP), respectively. The feasibility of this approach was confirmed by demonstrating that BAP, but not ERdj4, destabilizes the L/BiP complex. Overexpressing BAP or ERdj4 inhibits…
Identification of a novel compound heterozygote SCO2 mutation in cytochrome c oxidase deficient fatal infantile cardioencephalomyopathy
2006
UNLABELLED Fatal infantile cardioencephalomyopathy (OMIM No. 604377) is a disorder of the mitochondrial respiratory chain and is characterised by neonatal progressive muscular hypotonia and cardiomyopathy because of severe Cytochrome c oxidase deficiency. Here we report a novel mutation in the Cytochrome c oxidase assembly gene SCO2 in an infant with fatal infantile cardioencephalomyopathy despite normal initial metabolic screening. CONCLUSION In newborns with unexplained muscular hypotonia and cardiomyopathy genetic testing of mitochondrial respiratory chain disorders might be helpful to establish a final diagnosis and guide treatment decisions.