Search results for "chemical bond"
showing 10 items of 123 documents
Complexation behaviour of hexadentate ligands possessing N2O4and N2O2S2cores: differential reactivity towards Co(ii), Ni(ii) and Zn(ii) salts and str…
2004
Reactions of divalent metal salts of Co, Ni and Zn with 1,2-di(salicylaldimino-o-phenylthio) ethane (H2L1) and 1,2-di(naphthaldimino-o-phenylthio) ethane (H2L2), having N2O2S2 cores, and 1,2-di(O-salicylaldimino-o-hydroxyphenyl) ethane (H2L3), having a N2O4 core, have been explored. Out of the three ligands and the nine products obtained from the corresponding reactions, two ligands and seven products were crystallographically characterized. However, all the ligands and the products were characterized by analytical and spectral methods. Reaction of H2L1 and H2L2 with Co(II) salts results in oxidative cleavage of the C-S bond to produce a Co(III) product bound to two dissimilar tridentate li…
The Synthesis and Structure of Palladium 2,4-dimethyl-8-hydroselenoquinolinate
2014
The internal complex palladium 2,4-dimethyl-8- hydroselenoquinolinate Pd[C9H4(CH3)2NSe]2 (I) has been synthesized in the course of study of the complexing activity of 8- hydroselenoquinoline and investigation of the nature of chemical bond metal-selenium in the five-membered metal-containing ring. X-ray diffraction data for I: Monoclinic, space group P21/n, a = 9.0092(4), b = 16.3290(7), c = 14.1073(6) A, = 106.710(2)o, V = 1987.7(2) A3, Z = 4, R1=0.0477, wR2=0.1182 for 4499 reflections (diffractometer Bruker-Nonius KappaCCD, MoK). The crystal structure of the complex I is formed by neutral asymmetric molecules Pd[C9H4(CH3)2NSe]2 in which the central atom palladium is connected bidentic…
Amorphous Ge15Te85: density functional, high-energy x-ray and neutron diffraction study
2011
The structure and electronic properties of amorphous Ge15Te85 have been studied by combining density functional (DF) simulations with high-energy x-ray and neutron diffraction measurements. Three models with 560 atoms have been constructed using reverse Monte Carlo methods constrained to (1) agree with the experimental structure factors S(Q), and have (2) energies close to the DF minimum and (3) a semiconducting band structure. The best structure is based on the melt-quenched DF structure and has a small number of Ge–Ge bonds. It shows interlocking networks of Te and GeTe with a significant fraction (22–24%) of voids (cavities). Ge occurs with both tetrahedral and 3 + 3 defective octahedral…
A Combined Experimental and Theoretical Charge Density Study of the Chemical Bonding and Magnetism in 3-Amino-propanolato Cu(II) Complexes Containing…
2008
The experimental (100 K) and theoretical charge densities in the binuclear complexes [Cu2(ap)2(L)2] (ap = 3-aminopropanolate) 1 (L = nitrite), 2 (L = nitrate), and 3 (L = formate) have been examined. These complexes contain the same centrosymmetric alkoxy-bridged motif, where each strongly Jahn-Teller distorted Cu(II) ion is ligated to three O atoms and one N atom in a square-planar arrangement. This primary coordination sphere is augmented by a long contact with the O atom of a pendant L anion from an adjacent molecule in the crystal lattice. Topological analyses of the experimental and theoretical densities according to the quantum theory of atoms in molecules (QTAIM) are in excellent agr…
(Invited) The Effect of (La,Sr)MnO 3 Cathode Surface Termination on Its Electronic Structure
2017
La1-xSrxMnO3 (LSM) was one of the first perovskites used as SOFC cathode material. Its (001) surface has two possible terminations, LaSrO and MnO2, with quite different properties and oxygen reduction efficiencies. To avoid effects of surface polarity and the dipole moment across the material, symmetric non-stoichiometric slabs are commonly used in theoretical calculations with identical terminating planes on its both sides. We analyzed the dependence of the electronic structure (density of states) and charge distribution (effective atomic charges and chemical bond covalency) on the slab termination and Mn ion oxidation state (controlled by the Sr content and slab nonstoichiometry).
Urbach absorption edge of silica: reduction of glassy disorder by fluorine doping
2004
Abstract The vacuum-ultraviolet fundamental absorption edge (‘Urbach edge’) of four types of synthetic silica glasses, ‘wet’, ‘dry’, and doped by 570 and 6010 ppm wt. fluorine, was studied in the absorption coefficient range (1 cm−1–500 cm−1) at room temperature. The absorption edge has exponential form in agreement with the Urbach’s rule. The well-documented increase of vacuum-ultraviolet transparency upon fluorine doping is due to a steeper absorption edge (shorter ‘Urbach tail’) as compared to undoped silicas. The increase of the edge slope in F-doped silica occurs already the lower dopant concentration (570 ppm), the slope does not increase further in the 6010 ppm doped glass. These fin…
Inter- and intramolecular bonding in 1,3,5-triamino-2,4,6-trinitrobenzene: An experimental and theoretical quantum theory of atoms in molecules (QTAI…
2017
Chemical bonding in the triclinic phase of 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) has been analyzed based on the experimental electron density derived from X-ray diffraction data obtained at 20 K. The results have been compared with those from solid state theoretical calculations. The total electron density has been analyzed in terms of the Quantum Theory of Atoms in Molecules (QTAIM). Features of the covalent bonds demonstrate the presence of multiple bonds of various order. Strong intramolecular hydrogen bonds and weaker intermolecular bonds within the layer structure are characterized by the properties of their (3, −1) critical points. Weaker interactions, predominantly O···O, betwe…
Quantum Chemical Calculations Show that the Uranium Molecule U2 Has a Quintuple Bond.
2005
Covalent bonding is commonly described by Lewis's theory1, with an electron pair shared between two atoms constituting one full bond. Beginning with the valence bond description2 for the hydrogen molecule, quantum chemists have further explored the fundamental nature of the chemical bond for atoms throughout the periodic table, confirming that most molecules are indeed held together by one electron pair for each bond. But more complex binding may occur when large numbers of atomic orbitals can participate in bond formation. Such behaviour is common with transition metals. When involving heavy actinide elements, metal–metal bonds might prove particularly complicated. To date, evidence for ac…
Nature of the ring-closure process along the rearrangement of octa-1,3,5,7-tetraene to cycloocta-1,3,5-triene from the perspective of the electron lo…
2011
We analyze the behavior of the energy profile of the ring-closure process for the transformation of (3Z,5Z)-octa-1,3,5,7-tetraene 5 to (1Z,3Z,5Z)-cycloocta-1,3,5-triene 6 through a combination of electron localization function (ELF) and catastrophe theory (CT). From this analysis, concepts such as bond breaking/forming processes, formation/annihilation of lone pairs, and other electron pair rearrangements arise naturally through the reaction progress simply in terms of the different ways of pairing up the electrons. A relationship between the topology and the nature of the bond breaking/forming processes along this rearrangement is reported. The different domains of structural stability of …
HEAT: High accuracy extrapolated ab initio thermochemistry.
2004
A theoretical model chemistry designed to achieve high accuracy for enthalpies of formation of atoms and small molecules is described. This approach is entirely independent of experimental data and contains no empirical scaling factors, and includes a treatment of electron correlation up to the full coupled-cluster singles, doubles, triples and quadruples approach. Energies are further augmented by anharmonic zero-point vibrational energies, a scalar relativistic correction, first-order spin-orbit coupling, and the diagonal Born-Oppenheimer correction. The accuracy of the approach is assessed by several means. Enthalpies of formation (at 0 K) calculated for a test suite of 31 atoms and mole…