Search results for "cilium"

showing 10 items of 109 documents

Primary ciliary dyskinesia. Ciliopathies

2008

Abstract Primary ciliary dyskinesia is a genetically inherited syndrome characterised by ciliary immotility or dysmotility. Deficiency in mucociliary clearance produces chronic respiratory infections from birth, male sterility by spermatozoid immotility and situs inversus in 40%–50% of patients (Kartagener's syndrome). Diagnosis is made by analysing ciliary motility with high-speed digital video and ciliary ultrastructure. The wide distribution and functions of the cilia in the body mean that this dysfunction can generate other ciliopathies apart from primary ciliary dyskinesia.

Pathologymedicine.medical_specialtyBronchiectasisSterilityMucociliary clearancebusiness.industryCiliumGeneral MedicineAnatomymedicine.diseaseCiliopathiesSitus inversusRetinitis pigmentosaotorhinolaryngologic diseasesmedicineHumansbusinessCiliary Motility DisordersPrimary ciliary dyskinesiaActa Otorrinolaringologica (English Edition)
researchProduct

Identification of Novel Molecular Components of the Photoreceptor Connecting Cilium by Immunoscreens

2002

Abstract The connecting cilium of photoreceptor cells is the only intracellular link between the morphologically, functionally and biochemically different compartments of the inner and outer segments. The non-motile modified cilium plays an important role in the organization and the function of photoreceptor cells, namely in delivery and turnover of enzymes and substrates of the visual transduction cascade, and the photosensitive membranes of the outer segment. The protein components of the cilium participate in the intracellular transport through the cilium, in the outer segment disk morphogenesis and in the maintenance of discrete membrane domains. In order to identify yet unknown cytoske…

Photoreceptor Connecting CiliumAdenomatous Polyposis Coli ProteinXenopus ProteinsBiologyPhotoreceptor cellRats Sprague-DawleyMiceCellular and Molecular NeurosciencemedicineAnimalsDrosophila ProteinsCiliaCloning MolecularCytoskeletonMicrotubule-Associated Protein 4CytoskeletonGene LibraryRetinaCiliumCalcium-Binding ProteinsDynactin ComplexSensory SystemsRatsCell biologyMice Inbred C57BLOphthalmologymedicine.anatomical_structureCentrinsense organsMicrotubule-Associated ProteinsPhotoreceptor Cells VertebrateVisual phototransductionExperimental Eye Research
researchProduct

Insights into functional aspects of centrins from the structure of N-terminally extended mouse centrin 1

2006

AbstractCentrins are members of the family of Ca2+-binding EF-hand proteins. In photoreceptor cells, centrin isoform 1 is specifically localized in the non-motile cilium. This connecting cilium links the light-sensitive outer segment with the biosynthetic active inner segment of the photoreceptor cell. All intracellular exchanges between these compartments have to occur through this cilium. Three-dimensional structures of centrins from diverse organisms are known, showing that the EF-hand motifs of the N-terminal domains adopt closed conformations, while the C-terminal EF-hand motifs have open conformations. The crystal structure of an N-terminally extended mouse centrin 1 (MmCen1-L) resemb…

Protein ConformationAmino Acid MotifsSequence HomologyPlasma protein bindingEF-handTroponin CMiceStructure-Activity RelationshipProtein structureCalcium-binding proteinConnecting ciliumCentrinAnimalsHumansPhotoreceptor CellsCiliaEF Hand MotifsProtein Structure QuaternaryChemistryEF handCiliumCalcium-Binding ProteinsTerminal Repeat SequencesCalcium-binding proteinSensory SystemsProtein Structure TertiaryCell biologyOphthalmologyCentrinCalciumTransducinsense organsX-ray structureProtein BindingVision Research
researchProduct

Phylogenetic profiling and cellular analyses of ARL16 reveal roles in traffic of IFT140 and INPP5E

2021

ABSTRACTThe ARF family of regulatory GTPases is ancient, with 16 members predicted to have been present in the last eukaryotic common ancestor. Our phylogenetic profiling of paralogs in diverse species identified four family members whose presence correlates with that of a cilium/flagellum: ARL3, ARL6, ARL13, and ARL16. No prior evidence links ARL16 to cilia or other cell functions, despite its presence throughout eukaryotes. Deletion of ARL16 in MEFs results in decreased ciliogenesis yet increased ciliary length. We also found Arl16 KO in MEFs to alter ciliary protein content, including loss of ARL13B, ARL3, INPP5E, and the IFT-A core component IFT140. Instead, both INPP5E and IFT140 accum…

Protein contentsymbols.namesakeCiliumCiliogenesisINPP5EsymbolsPhylogenetic profilingGTPaseGolgi apparatusBiologyFlagellumCell biology
researchProduct

An organelle-specific protein landscape identifies novel diseases and molecular mechanisms.

2016

Cellular organelles provide opportunities to relate biological mechanisms to disease. Here we use affinity proteomics, genetics and cell biology to interrogate cilia: poorly understood organelles, where defects cause genetic diseases. Two hundred and seventeen tagged human ciliary proteins create a final landscape of 1,319 proteins, 4,905 interactions and 52 complexes. Reverse tagging, repetition of purifications and statistical analyses, produce a high-resolution network that reveals organelle-specific interactions and complexes not apparent in larger studies, and links vesicle transport, the cytoskeleton, signalling and ubiquitination to ciliary signalling and proteostasis. We observe sub…

Proteomics0301 basic medicineSystems AnalysisDNA Mutational Analysislnfectious Diseases and Global Health Radboud Institute for Molecular Life Sciences [Radboudumc 4]General Physics and AstronomyDatasets as Topicmethods [Chromatography Affinity]ProteomicsSensory disorders Donders Center for Medical Neuroscience [Radboudumc 12]Chromatography AffinityMass SpectrometryProtein Interaction Mappingtherapy [Ciliopathies]genetics [Ciliopathies]methods [Molecular Targeted Therapy]Molecular Targeted TherapyProtein Interaction MapsMultidisciplinaryCiliumChemistry (all)Qabnormalities [Spine]pathology [Ciliopathies]genetics [Muscle Hypotonia]therapy [Muscle Hypotonia]Metabolic Disorders Radboud Institute for Molecular Life Sciences [Radboudumc 6]metabolism [Proteins]isolation & purification [Proteins]physiology [Biological Transport]3. Good healthCell biologyVesicular transport proteinpathology [Dwarfism]metabolism [Cilia]Muscle Hypotoniaddc:500pathology [Muscle Hypotonia]pathology [Spine]genetics [Dwarfism]Rare cancers Radboud Institute for Health Sciences [Radboudumc 9]ScienceDwarfismExocystBiologyArticleGeneral Biochemistry Genetics and Molecular BiologyPhysics and Astronomy (all)03 medical and health sciencesIntraflagellar transportCiliogenesisOrganelleHumansCiliaBiochemistry Genetics and Molecular Biology (all)ProteinsBiological TransportGeneral Chemistrytherapy [Dwarfism]Fibroblastsgenetics [Proteins]CiliopathiesSpinemethods [Protein Interaction Mapping]Renal disorders Radboud Institute for Molecular Life Sciences [Radboudumc 11]030104 developmental biologyProteostasisHEK293 Cellsmethods [Proteomics]
researchProduct

CiliaCarta: An integrated and validated compendium of ciliary genes

2019

The cilium is an essential organelle at the surface of mammalian cells whose dysfunction causes a wide range of genetic diseases collectively called ciliopathies. The current rate at which new ciliopathy genes are identified suggests that many ciliary components remain undiscovered. We generated and rigorously analyzed genomic, proteomic, transcriptomic and evolutionary data and systematically integrated these using Bayesian statistics into a predictive score for ciliary function. This resulted in 285 candidate ciliary genes. We generated independent experimental evidence of ciliary associations for 24 out of 36 analyzed candidate proteins using multiple cell and animal model systems (mouse…

ProteomicsSensory ReceptorsNematodaSocial SciencesCiliopathiesBiochemistrySensory disorders Donders Center for Medical Neuroscience [Radboudumc 12]Transcriptome0302 clinical medicineAnimal CellsPsychologyRETINAL PHOTORECEPTOR CELLSExomeNeurons0303 health sciences030302 biochemistry & molecular biologyEukaryotaGenomicsPRIMARY CILIUMthecilium3. Good healthNucleic acidsGenetic interferenceOsteichthyesMedicineEpigeneticsCellular Structures and OrganellesCellular Typesproteomic databasesSensory Receptor CellsScienceeducationCiliary genesLEBER CONGENITAL AMAUROSISGenomics03 medical and health sciencesGeneticsCiliaCaenorhabditis elegansIDENTIFICATIONMUTATIONSEmbryosciliaOrganismsBiology and Life SciencesBayes TheoremMolecular Sequence Annotationmedicine.diseaseInvertebratesFishciliary proteomeAnimal StudiesCaenorhabditisGene expressionembryos030217 neurology & neurosurgeryDevelopmental BiologyNeurosciencePhotoreceptorsCandidate geneEmbryologyOligonucleotidesMorpholinoDatabase and Informatics MethodsRNA interferenceBayesian classifierTRANSITION ZONEZebrafishAntisense OligonucleotidesZebrafishGeneticsMultidisciplinarySpectrometric Identification of ProteinsProteomic DatabasesNucleotidesCiliumQStable Isotope Labeling by Amino Acids in Cell CultureRphotoreceptorsMetabolic Disorders Radboud Institute for Molecular Life Sciences [Radboudumc 6]Animal ModelsPhenotypeINTRAFLAGELLAR TRANSPORTDIFFERENTIATIONPhenotypeExperimental Organism SystemsCaenorhabditis ElegansVertebratesSensory PerceptionResearch ArticleSignal TransductionEXPRESSIONStable isotope labeling by amino acids in cell cultureComputational biologyBiologyResearch and Analysis MethodsSOLUTE-CARRIER-PROTEINModel OrganismsmedicineAnimalsdata integration030304 developmental biologyAfferent NeuronsReproducibility of ResultsCell Biologyzebrafishbiology.organism_classificationCiliopathyRenal disorders Radboud Institute for Molecular Life Sciences [Radboudumc 11]Biological DatabasesCellular NeuroscienceRNAOSCP1CiliaCartaPLoS ONE
researchProduct

TALPID3 controls centrosome and cell polarity and the human ortholog KIAA0586 is mutated in Joubert syndrome (JBTS23)

2015

Joubert syndrome (JBTS) is a severe recessive neurodevelopmental ciliopathy which can affect several organ systems. Mutations in known JBTS genes account for approximately half of the cases. By homozygosity mapping and whole-exome sequencing, we identified a novel locus, JBTS23, with a homozygous splice site mutation in KIAA0586 (alias TALPID3), a known lethal ciliopathy locus in model organisms. Truncating KIAA0586 mutations were identified in two additional patients with JBTS. One mutation, c.428delG (p.Arg143Lysfs*4), is unexpectedly common in the general population and may be a major contributor to JBTS. We demonstrate KIAA0586 protein localization at the basal body in human and mouse p…

QH301-705.5chickenSciencePopulationCell Cycle ProteinsBiologymedicine.disease_causeRetinaGeneral Biochemistry Genetics and Molecular BiologyJoubert syndromeMiceTalpid3CerebellumJoubert syndromeCiliogenesismedicineAnimalsHumansBasal bodyAbnormalities MultiplehumanEye AbnormalitiesBiology (General)Human Biology and MedicineeducationmouseGeneticsMutationeducation.field_of_studyGeneral Immunology and MicrobiologyGeneral NeuroscienceCiliumQRGeneral MedicineKidney Diseases Cysticmedicine.diseaseKIAA05863. Good healthDisease Models Animalcell polarityCiliopathyDevelopmental Biology and Stem CellsciliopathycentrosomeCentrosomeMutationMedicineResearch ArticleeLife
researchProduct

Disruption of the retinitis pigmentosa 28 gene Fam161a in mice affects photoreceptor ciliary structure and leads to progressive retinal degeneration.

2014

Mutations in the FAM161A gene were previously identified as the cause for autosomal-recessive retinitis pigmentosa 28. To study the effects of Fam161a dysfunction in vivo, we generated gene-trapped Fam161a(GT/GT) mice with a disruption of its C-terminal domain essential for protein-protein interactions. We confirmed the absence of the full-length Fam161a protein in the retina of Fam161a(GT/GT) mice using western blots and showed weak expression of a truncated Fam161a protein by immunohistochemistry. Histological analyses demonstrated that photoreceptor segments were disorganized in young Fam161a(GT/GT) mice and that the outer retina was completely lost at 6 months of age. Reactive microglia…

Retinal degenerationMaleOpsinGenotypeVision DisordersAction PotentialsGene ExpressionMice TransgenicRetinal Pigment EpitheliumBiologyRetinaMiceRetinitis pigmentosaGeneticsmedicineAnimalsHumansPhotoreceptor CellsPeripherin 2Eye ProteinsMolecular BiologyGenetics (clinical)Retinal regenerationRetinaGene therapy of the human retinaCiliumRetinal DegenerationGeneral Medicinemedicine.diseaseeye diseasesCell biologyProtein Transportmedicine.anatomical_structureGenetic LociGene TargetingMutationFemalesense organsMicrogliaCarrier ProteinsProtein BindingHuman molecular genetics
researchProduct

Primary Cilium Mediated Retinal Pigment Epithelium Maturation is Retarded in Ciliopathy Patient Cells

2018

Primary cilia are sensory organelles that protrude from the cell membrane. Cilia defects cause ciliopathy disorders with retinal degeneration as a prominent phenotype. Here, we demonstrate that the retinal pigment epithelium (RPE), essential for photoreceptor development and function, requires a functional primary cilium for complete maturation, and RPE maturation defects in ciliopathies precede photoreceptor development. Pharmacologically enhanced ciliogenesis in wildtype induced pluripotent stem cells (iPSCs)-RPE leads to fully-mature and functional cells. Whereas, ciliopathy patient-derived iPSCs-RPE and wildtype iPSC-RPE with a knockdown of ciliary-trafficking protein remain immature, w…

Retinal degenerationRetinal pigment epitheliumCiliumBiologymedicine.diseaseCiliopathieseye diseasesCell biologyCell membraneCiliopathymedicine.anatomical_structureCiliogenesismedicinesense organsInduced pluripotent stem cellSSRN Electronic Journal
researchProduct

2021

Primary cilia are sensory organelles vital for developmental and physiological processes. Their dysfunction causes a range of phenotypes including retinopathies. Although primary cilia have been described in the retinal pigment epithelium (RPE), little is known about their contribution to biological processes within this tissue. Ciliary proteins are increasingly being identified in non-ciliary locations and might carry out additional functions, disruption of which possibly contributes to pathology. The RPE is essential for maintaining photoreceptor cells and visual function. We demonstrate that upon loss of Bbs8, predominantly thought to be a ciliary gene, the RPE shows changes in gene and …

Retinal degenerationRetinal pigment epitheliumCiliumCell BiologyBiologymedicine.diseasePhenotypeCell biologyCiliopathymedicine.anatomical_structuremedicinesense organsSignal transductionCytoskeletonCell adhesionDevelopmental BiologyFrontiers in Cell and Developmental Biology
researchProduct