Search results for "classical"
showing 10 items of 2294 documents
Singular integrals on regular curves in the Heisenberg group
2019
Let $\mathbb{H}$ be the first Heisenberg group, and let $k \in C^{\infty}(\mathbb{H} \, \setminus \, \{0\})$ be a kernel which is either odd or horizontally odd, and satisfies $$|\nabla_{\mathbb{H}}^{n}k(p)| \leq C_{n}\|p\|^{-1 - n}, \qquad p \in \mathbb{H} \, \setminus \, \{0\}, \, n \geq 0.$$ The simplest examples include certain Riesz-type kernels first considered by Chousionis and Mattila, and the horizontally odd kernel $k(p) = \nabla_{\mathbb{H}} \log \|p\|$. We prove that convolution with $k$, as above, yields an $L^{2}$-bounded operator on regular curves in $\mathbb{H}$. This extends a theorem of G. David to the Heisenberg group. As a corollary of our main result, we infer that all …
Existence of doubling measures via generalised nested cubes
2012
Working on doubling metric spaces, we construct generalised dyadic cubes adapting ultrametric structure. If the space is complete, then the existence of such cubes and the mass distribution principle lead into a simple proof for the existence of doubling measures. As an application, we show that for each $\epsilon>0$ there is a doubling measure having full measure on a set of packing dimension at most $\epsilon$.
A class of shear deformable isotropic elastic plates with parametrically variable warping shapes
2017
A homogeneous shear deformable isotropic elastic plate model is addressed in which the normal transverse fibers are allowed to rotate and to warp in a physically consistent manner specified by a fixed value of a real non-negative warping parameter ω. On letting ω vary continuously (at fixed load and boundary conditions), a continuous family of shear deformable plates Pω is generated, which spans from the Kirchhoff plate at the lower limit ω=0, to the Mindlin plate at the upper limit ω=∞; for ω=2, Pω identifies with the third-order Reddy plate. The boundary-value problem for the generic plate Pω is addressed in the case of quasi-static loads, for which a principle of minimum total potential …
Dimension estimates for the boundary of planar Sobolev extension domains
2020
We prove an asymptotically sharp dimension upper-bound for the boundary of bounded simply-connected planar Sobolev $W^{1,p}$-extension domains via the weak mean porosity of the boundary. The sharpness of our estimate is shown by examples.
Figures of equilibrium in close binary systems
1992
The equilibrium configurations of close binary systems are analyzed. The autogravitational, centrifugal and tidal potentials are expanded in Clairaut's coordinates. From the set of the total potential angular terms an integral equations system is derived. The reduction of them to ordinary differential equations and the determination of the boundary conditions allow a formulation of the problem in terms of a single variable.
Nonlocal elasticity and related variational principles
2001
Abstract The Eringen model of nonlocal elasticity is considered and its implications in solid mechanics studied. The model is refined by assuming an attenuation function depending on the `geodetical distance' between material particles, such that in the diffusion processes of the nonlocality effects certain obstacles as holes or cracks existing in the domain can be circumvented. A suitable thermodynamic framework with nonlocality is also envisaged as a firm basis of the model. The nonlocal elasticity boundary-value problem for infinitesimal displacements and quasi-static loads is addressed and the conditions for the solution uniqueness are established. Three variational principles, nonlocal…
Energy dissipative characteristic schemes for the diffusive Oldroyd-B viscoelastic fluid
2015
On spline methods of approximation under L-fuzzy information
2011
This work is closely related to our previous papers on algorithms of approximation under L-fuzzy information. In the classical theory of approximation central algorithms were worked out on the basis of usual, that is crisp splines. We describe central methods for solution of linear problems with balanced L-fuzzy information and develop the concept of L-fuzzy splines.
Entropy of transfer of n-nitroalkanes from n-octane to water at 25�C
1984
Entropy of transfer of nitromethane, nitroethane, 1-nitrobutane, 1-nitropentane, and 1-nitrohexane from n-octane to water at 25°C is calculated using an electrostatic model. The calculations indicate that the electrostatic transfer entropy depends primarily on the dipole moment and the size of the-C−NO2 group, showing a trend which is similar to that previously found for the transfer free energy of the same process.
Semiclassical Methods for the Description of Large Metal Clusters
1996
One of the most fascinating aspects of clusters is that they can be made arbitrarily large and therefore provide links between the microscopic and the macroscopic world. It is challenging to study how their physical properties change when going from atoms and small molecules to the bulk limit of condensed matter. But also the models and mathematical tools themselves, which are used in order to tackle the many-body problem, are an object of study for the theoretician. In particular, the question of how far quantum-mechanics must be carried with increasing size and where classical pictures become appropriate is of great interest. In this spirit, we discuss here some semiclassical methods for …