Search results for "clusters"

showing 10 items of 1274 documents

Trapping of ultracold atoms in a hollow-core photonic crystal fiber

2008

Ultracold sodium atoms have been trapped inside a hollow-core optical fiber. The atoms are transferred from a free space optical dipole trap into a trap formed by a red-detuned gaussian light mode confined to the core of the fiber. We show that at least 5% of the atoms held initially in the free space trap can be loaded into the core of the fiber and retrieved outside.

Condensed Matter::Quantum GasesPhysicsOptical fiberFOS: Physical sciencesPhysics::OpticsMicrostructured optical fiberAtomic and Molecular Physics and Opticslaw.inventionCondensed Matter - Other Condensed MatterCore (optical fiber)DipolelawUltracold atomPhysics::Atomic and Molecular ClustersPhysics::Atomic PhysicsFiberAtomic physicsOther Condensed Matter (cond-mat.other)Photonic crystalPhotonic-crystal fiberPhysical Review A
researchProduct

Strong enhancement of Penning ionization for asymmetric atom pairs in cold Rydberg gases: the Tom and Jerry effect

2016

We consider Penning ionization of Rydberg atom pairs as an Auger-type process induced by the dipole–dipole interaction and employ semiclassical formulae for dipole transitions to calculate the autoionization width as a function of the principal quantum numbers, n d , n i , of both atoms. While for symmetric atom pairs with the well-known increase of the autoionization width with increasing n 0 is obtained, the result for asymmetric pairs is counterintuitive—for a fixed n i of the ionizing atom of the pair, the autoionization width strongly increases with decreasing n d of the de-excited atom. For H Rydberg atoms this increase reaches two orders of magnitude at the maximum of the n d depende…

Condensed Matter::Quantum GasesPhysicsPhotoionizationCondensed Matter Physics01 natural sciencesAtomic and Molecular Physics and Optics010305 fluids & plasmassymbols.namesakeAutoionizationPenning ionizationIonization0103 physical sciencesRydberg atomPrincipal quantum numberPhysics::Atomic and Molecular ClustersRydberg formulasymbolsRydberg matterPhysics::Atomic PhysicsAtomic physics010306 general physicsJournal of Physics B: Atomic, Molecular and Optical Physics
researchProduct

Electron-cooled accumulation of 4 × 109positrons for production and storage of antihydrogen atoms

2016

Four billion positrons (e+) are accumulated in a Penning–Ioffe trap apparatus at 1.2 K and <6 × 10−17 Torr. This is the largest number of positrons ever held in a Penning trap. The e+ are cooled by collisions with trapped electrons (e−) in this first demonstration of using e− for efficient loading of e+ into a Penning trap. The combined low temperature and vacuum pressure provide an environment suitable for antihydrogen () production, and long antimatter storage times, sufficient for high-precision tests of antimatter gravity and of CPT.

Condensed Matter::Quantum GasesPhysicsPhysics::General PhysicsAntiparticleAnnihilationPlasmaElectronCondensed Matter PhysicsPenning trap01 natural sciencesAtomic and Molecular Physics and Optics010305 fluids & plasmasNuclear physicsTorrAntimatter0103 physical sciencesPhysics::Atomic and Molecular ClustersPhysics::Atomic PhysicsAtomic physics010306 general physicsAntihydrogenJournal of Physics B: Atomic, Molecular and Optical Physics
researchProduct

Effects of a uniform acceleration on atom–field interactions

2014

We review some quantum electrodynamical effects related to the uniform acceleration of atoms in vacuum. After discussing the energy level shifts of a uniformly accelerated atom in vacuum, we investigate the atom-wall Casimir-Polder force for accelerated atoms, and the van der Waals/Casimir-Polder interaction between two accelerated atoms. The possibility of detecting the Unruh effect through these phenomena is also discussed in detail.

Condensed Matter::Quantum GasesPhysicsQuantum PhysicsField (physics)FOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Condensed Matter PhysicsGeneral Relativity and Quantum CosmologyAtomic and Molecular Physics and OpticsCasimir effectGeneral Relativity and Quantum Cosmologysymbols.namesakeAccelerationUnruh effectUnruh effect Casimir–Polder forces vacuum fluctuationsAtomPhysics::Atomic and Molecular ClusterssymbolsPhysics::Accelerator PhysicsPhysics::Atomic Physicsvan der Waals forceAtomic physicsQuantum Physics (quant-ph)QuantumMathematical PhysicsPhysica Scripta
researchProduct

van der Waals interactions between excited atoms in generic environments

2015

We consider the the van der Waals force involving excited atoms in general environments, constituted by magnetodielectric bodies. We develop a dynamical approach studying the dynamics of the atoms and the field, mutually coupled. When only one atom is excited, our dynamical theory suggests that for large distances the van der Waals force acting on the ground-state atom is monotonic, while the force acting in the excited atom is spatially oscillating. We show how this latter force can be related to the known oscillating Casimir--Polder force on an excited atom near a (ground-state) body. Our force also reveals a population-induced dynamics: for times much larger that the atomic lifetime the …

Condensed Matter::Quantum GasesPhysicsQuantum PhysicsField (physics)Van der Waals forceVan der Waals strainVan der Waals surfaceFOS: Physical sciencesCasimir-Polder interaction01 natural sciencesLondon dispersion forcestructured environments010305 fluids & plasmassymbols.namesakeExcited state0103 physical sciencesAtomPhysics::Atomic and Molecular ClusterssymbolsVan der Waals radiusPhysics::Atomic Physicsvan der Waals forceAtomic physicsQuantum Physics (quant-ph)010306 general physicsPhysical Review A
researchProduct

COMPLEXITY, NOISE AND QUANTUM INFORMATION ON ATOM CHIPS

2008

The realization of quantum logic gates with neutral atoms on atom chips is investigated, including realistic features, such as noise and actual experimental setups.

Condensed Matter::Quantum GasesPhysicsQuantum networkPhysics and Astronomy (miscellaneous)Quantum sensorQuantum simulatorGATESQuantum logicComputer Science::Hardware ArchitectureQuantum circuitQuantum gateQuantum error correctionQuantum mechanicsPhysics::Atomic and Molecular ClustersPhysics::Atomic PhysicsQuantum informationHardware_LOGICDESIGNInternational Journal of Quantum Information
researchProduct

Оптимальная пара ридберговских атомов щелочных металлов в несимметричных пеннинговских процессах ионизации

2019

Penning ionization (PI) processes for cold Rydberg alkali metal atoms are investigated. Contrary to the reference case of a hydrogen atom, the corresponding autoionization widths demonstrate a sharp dependence (by orders of magnitude) on the orbital quantum numbers of the atoms exposed to long-range dipole-dipole interaction. An important feature of PI is the nontrivial dependence of its efficiency on the size of Rydberg particles. For all types of alkali atoms, the existence of optimal Rydberg pairs has been demonstrated (highly asymmetric configurations of Rydberg pairs), which lead to an explosive intensification (by several orders of magnitude) of the formation of free electrons due to…

Condensed Matter::Quantum GasesPhysics::Atomic and Molecular ClustersPhysics::Atomic PhysicsЖурнал технической физики
researchProduct

M6_Microfluidics_for_CNT

2018

The hydrodynamic trap holds an incoming droplet until the arrival of following droplet. The previous droplet leaves the trap in very rapid manner.

Condensed Matter::Quantum GasesPhysics::Fluid Dynamicsendocrine systemtrap occupation timetechnology industry and agriculturePhysics::Atomic and Molecular ClustersmicrofluidicsPhysics::Atomic Physicscomplex mixturesdroplet trapeye diseases
researchProduct

Refrigeration bound of heat-producing cylinders by superfluid helium

2019

In this paper we go ahead in our studies on refrigeration of nanosystems by superfluid helium, as an appealing subject for future applications to computers or astronautical precision nanodevices. We first recall the effective thermal conductivity in laminar counterflow superfluid helium through arrays of mutually parallel cylinders and we discuss the conditions for the appearance of quantum turbulence around the heat-producing cylinders. We then consider the cooling of an array of heat-producing cylindrical nanosystems by means of superfluid-helium counterflow. We discuss the upper bound on heat removal set by avoidance of quantum turbulence and avoidance of phase transition to normal He I,…

Condensed Matter::Quantum GasesPhysics::Fluid Dynamicsthermal conductivity liquid helium quantum turbulence micropores quantized vortices computer refrigeration.Mathematics; PhysicsRefrigerationExtended Thermodynamicssuperfluid heliumPhysics::Atomic and Molecular Clusterslcsh:Science (General)Settore MAT/07 - Fisica MatematicaMSC: 76A25 76F99 80A99.lcsh:Q1-390
researchProduct

Formation of self-trapped excitons through stimulated recombination of radiation-induced primary defects in alkali halides

1998

Abstract A self-trapped exciton formation through photostimulated recombination of an F and an H center — the exciton-created primary defect pair, is proposed and experimentally examined in alkali halides at low temperatures.

Condensed Matter::Quantum GasesPrimary (chemistry)PhotoluminescenceChemistryPhotostimulated luminescenceExcitonInorganic chemistryBiophysicsHalideRadiation inducedGeneral ChemistryCondensed Matter PhysicsAlkali metalPhotochemistryBiochemistryAtomic and Molecular Physics and OpticsCondensed Matter::Materials SciencePhysics::Atomic and Molecular ClustersPhysics::Atomic PhysicsPhysics::Chemical PhysicsRecombinationJournal of Luminescence
researchProduct