6533b823fe1ef96bd127f6ee

RESEARCH PRODUCT

van der Waals interactions between excited atoms in generic environments

Lucia RizzutoPablo BarcellonaStefan Yoshi BuhmannRoberto Passante

subject

Condensed Matter::Quantum GasesPhysicsQuantum PhysicsField (physics)Van der Waals forceVan der Waals strainVan der Waals surfaceFOS: Physical sciencesCasimir-Polder interaction01 natural sciencesLondon dispersion forcestructured environments010305 fluids & plasmassymbols.namesakeExcited state0103 physical sciencesAtomPhysics::Atomic and Molecular ClusterssymbolsVan der Waals radiusPhysics::Atomic Physicsvan der Waals forceAtomic physicsQuantum Physics (quant-ph)010306 general physics

description

We consider the the van der Waals force involving excited atoms in general environments, constituted by magnetodielectric bodies. We develop a dynamical approach studying the dynamics of the atoms and the field, mutually coupled. When only one atom is excited, our dynamical theory suggests that for large distances the van der Waals force acting on the ground-state atom is monotonic, while the force acting in the excited atom is spatially oscillating. We show how this latter force can be related to the known oscillating Casimir--Polder force on an excited atom near a (ground-state) body. Our force also reveals a population-induced dynamics: for times much larger that the atomic lifetime the atoms will decay to their ground-states leading to the van der Waals interaction between ground-state atoms.

https://doi.org/10.1103/physreva.94.012705