0000000000538261

AUTHOR

Pablo Barcellona

showing 5 related works from this author

van der Waals interactions between excited atoms in generic environments

2015

We consider the the van der Waals force involving excited atoms in general environments, constituted by magnetodielectric bodies. We develop a dynamical approach studying the dynamics of the atoms and the field, mutually coupled. When only one atom is excited, our dynamical theory suggests that for large distances the van der Waals force acting on the ground-state atom is monotonic, while the force acting in the excited atom is spatially oscillating. We show how this latter force can be related to the known oscillating Casimir--Polder force on an excited atom near a (ground-state) body. Our force also reveals a population-induced dynamics: for times much larger that the atomic lifetime the …

Condensed Matter::Quantum GasesPhysicsQuantum PhysicsField (physics)Van der Waals forceVan der Waals strainVan der Waals surfaceFOS: Physical sciencesCasimir-Polder interaction01 natural sciencesLondon dispersion forcestructured environments010305 fluids & plasmassymbols.namesakeExcited state0103 physical sciencesAtomPhysics::Atomic and Molecular ClusterssymbolsVan der Waals radiusPhysics::Atomic Physicsvan der Waals forceAtomic physicsQuantum Physics (quant-ph)010306 general physicsPhysical Review A
researchProduct

Dynamical Casimir-Polder force between an excited atom and a conducting wall

2016

We consider the dynamical atom-surface Casimir-Polder force in the non-equilibrium configuration of an atom near a perfectly conducting wall, initially prepared in an excited state with the field in its vacuum state. We evaluate the time-dependent Casimir-Polder force on the atom, and find that it shows an oscillatory behavior from attractive to repulsive both in time and in space. We also investigate the asymptotic behavior in time of the dynamical force and of related local field quantities, showing that the static value of the force, as obtained by a time-independent approach, is recovered for times much larger than the timescale of the atomic self-dressing, but smaller than the atomic d…

General PhysicsField (physics)Vacuum stateNon-equilibrium thermodynamicsFOS: Physical sciences7. Clean energy01 natural sciencesquant-phQuantum mechanics0103 physical sciencesAtomPhysics::Atomic and Molecular ClustersPhysics::Atomic Physics010306 general physicsLocal field01 Mathematical SciencesPhysicsdispersion interactionsCondensed Matter::Quantum GasesQuantum Physics02 Physical Sciences010308 nuclear & particles physicsDynamical Casimir effectCasimir effectPotsdam Transfer - Zentrum für Gründung Innovation Wissens- und TechnologietransferExcited stateAtomic physics03 Chemical SciencesQuantum Physics (quant-ph)Radioactive decay
researchProduct

Tuning the collective decay of two entangled emitters by means of a nearby surface

2017

We consider the radiative properties of a system of two identical correlated atoms interacting with the electromagnetic field in its vacuum state in the presence of a generic dielectric environment. We suppose that the two emitters are prepared in a symmetric or antisymmetric superposition of one ground state and one excited state and we evaluate the transition rate to the collective ground state, showing distinctive cooperative radiative features. Using a macroscopic quantum electrodynamics approach to describe the electromagnetic field, we first obtain an analytical expression for the decay rate of the two entangled two-level atoms in terms of the Green's tensor of the generic external en…

Electromagnetic fieldPhysicsQuantum PhysicsSubradianceVacuum stateFOS: Physical sciencesCondensed Matter PhysicsTransition rate matrix01 natural sciencesAtomic and Molecular Physics and Optics010305 fluids & plasmasSuperposition principleSuperradianceExcited stateQuantum mechanics0103 physical sciencesRadiative transferTensor010306 general physicsGround stateQuantum Physics (quant-ph)Macroscopic quantum electrodynamic
researchProduct

Dynamical Casimir-Polder interaction between a chiral molecule and a surface

2016

We develop a dynamical approach to study the Casimir-Polder force between a initially bare molecule and a magnetodielectric body at finite temperature. Switching on the interaction between the molecule and the field at a particular time, we study the resulting temporal evolution of the Casimir-Polder interaction. The dynamical self-dressing of the molecule and its population-induced dynamics are accounted for and discussed. In particular, we find that the Casimir-Polder force between a chiral molecule and a perfect mirror oscillates in time with a frequency related to the molecular transition frequency, and converges to the static result for large times.

Surface (mathematics)PhysicsQuantum PhysicsPhotonField (physics)Dynamics (mechanics)InverseFOS: Physical sciences010402 general chemistry01 natural sciences0104 chemical sciencesCasimir effectQuantum mechanics0103 physical sciencesMoleculeChiral molecule010306 general physicsQuantum Physics (quant-ph)Dynamical Casimir-Polder forceMolecule-surface interaction
researchProduct

A microscopic approach to Casimir and Casimir-Polder forces between metallic bodies

2014

We consider the Casimir-Polder interaction energy between a metallic nanoparticle and a metallic plate, as well as the Casimir interaction energy between two macroscopic metal plates, in terms of the many-body dispersion interactions between their constituents. Expressions for two- and three-body dispersion interactions between the microscopic parts of a real metal are first obtained, both in the retarded and non-retarded limits. These expressions are then used to evaluate, a compare each other, the overall two- and three-body contributions to the macroscopic Casimir-Polder and Casimir force, by summing up the contributions from the microscopic constituents of the bodies (metal nanoparticle…

PhysicsQuantum PhysicsCondensed Matter - Mesoscale and Nanoscale PhysicsFOS: Physical sciencesGeneral Physics and AstronomyNanoparticlemany-body interactionsCasimir-Polder interactionInteraction energyCasimir effectMetalCasimir effectClassical mechanicsvisual_artMesoscale and Nanoscale Physics (cond-mat.mes-hall)Dispersion (optics)Convergence (routing)visual_art.visual_art_mediumRapidityQuantum Physics (quant-ph)Metal nanoparticles
researchProduct