Search results for "clusters"
showing 10 items of 1274 documents
Core‐Selective Silver‐Doping of Gold Nanoclusters by Surface‐Bound Sulphates on Colloidal Templates: From Synthetic Mechanism to Relaxation Dynamics
2022
Funding Information: This work was carried out under the ERC Advanced grant (DRIVEN, ERC‐2016‐AdG‐742829), Academy of Finland's Centre of Excellence in Life‐Inspired Hybrid Materials (LIBER, 346108), Academy of Finland (No. 321443, 328942, 308647, and 318891) and Photonic Research and Innovation (PREIN) as well as FinnCERES flagships. L.F. and X.C. thanks for support from CSC (IT Center for Science, Finland) for providing computation resources. The authors acknowledge the provision of facilities and technical support by Aalto University OtaNano – Nanomicroscopy Center (Aalto‐NMC). | openaire: EC/H2020/742829/EU//DRIVEN Ultra-small luminescent gold nanoclusters (AuNCs) have gained substantia…
The richest superclusters : I Morphology
2007
We study the morphology of the richest superclusters from the catalogues of superclusters of galaxies in the 2dF Galaxy Redshift Survey and compare the morphology of real superclusters with model superclusters in the Millennium Simulation. We use Minkowski functionals and shapefinders to quantify the morphology of superclusters: their sizes, shapes, and clumpiness. We generate empirical models of simple geometry to understand which morphologies correspond to the supercluster shapefinders. We show that rich superclusters have elongated, filamentary shapes with high-density clumps in their core regions. The clumpiness of superclusters is determined using the fourth Minkowski functional $V_3$.…
Ab initio calculations of pure and Co+2-doped MgF2 crystals
2020
This research was partly supported by the Kazakhstan Science Project № AP05134367«Synthesis of nanocrystals in track templates of SiO2/Si for sensory, nano- and optoelectronic applications», as well as by Latvian Research Council project lzp-2018/1-0214. Calculations were performed on Super Cluster (LASC) in the Institute of Solid State Physics (ISSP) of the University of Latvia. Authors are indebted to S. Piskunov for stimulating discussions.
Negative thermal expansion in cuprite-type compounds: A combined synchrotron XRPD, EXAFS, and computational study of Cu2O and Ag2O
2006
Cuprite-type oxides (Cu2O and Ag2O) are framework structures composed by two interpenetrated networks of metal-sharing M4O tetrahedra (M = Cu, Ag). Both compounds exhibit a peculiar negative thermal expansion (NTE) behaviour over an extended temperature range (9 240 K for Cu2O, 30-470 K for Ag2O). High-accuracy synchrotron powder diffraction and EXAFS measurements were performed from 10 K up to the decomposition temperature to understand the nature of the NTE effects. The critical comparison of the diffraction and absorption results concerning the temperature dependence of the interatomic distances and of the atomic vibrational parameters proves to be fundamental in defining the local dynam…
On the carrier of inertia
2018
A change in momentum will inevitably perturb the all-embracing vacuum, whose reaction we understand as inertia. Since the vacuum's physical properties relate to light, we propose that the vacuum embodies photons, but in pairs without net electromagnetic fields. In this physical form the free space houses energy in balance with the energy of matter in the whole Universe. Likewise, we reason that a local gravitational potential is the vacuum in a local balance with energy that is bound to a body. Since a body couples to the same vacuum universally and locally, we understand that inertial and gravitational masses are identical. By the same token, we infer that gravity and electromagnetism shar…
Large numbers of cold positronium atoms created in laser-selected Rydberg states using resonant charge exchange
2016
Lasers are used to control the production of highly excited positronium atoms (Ps*). The laser light excites Cs atoms to Rydberg states that have a large cross section for resonant charge-exchange collisions with cold trapped positrons. For each trial with 30 million trapped positrons, more than 700 000 of the created Ps* have trajectories near the axis of the apparatus, and are detected using Stark ionization. This number of Ps* is 500 times higher than realized in an earlier proof-of-principle demonstration (2004 Phys. Lett. B 597 257). A second charge exchange of these near-axis Ps* with trapped antiprotons could be used to produce cold antihydrogen, and this antihydrogen production is e…
Stabilized Naked Sub-nanometric Cu Clusters within a Polymeric Film Catalyze C-N, C-C, C-O, C-S, and C-P Bond-Forming Reactions
2015
[EN] Sub-nanometric Cu clusters formed by endogenous reduction of Cu salts and Cu nanoparticles are active and selective catalysts for C−N, C−C, C−O, C−S, and C−P bond-forming reactions. Sub-nanometric Cu clusters have also been generated within a polymeric film and stored with full stability for months. In this way, they are ready to be used on demand and maintain high activity (TONs up to 104 ) and selectivity for the above reactions. A potential mechanism for the formation of the sub-nanometric clusters and their electronic nature is presented.
Magic triangular and tetrahedral clusters
1997
Using the methods of density functional theory and the jellium model we show that clusters with triangular [in two dimensions (2D)] or tetrahedral [in three dimensions (3D)] shapes have a strong shell structure and enhanced stability. Moreover, the shell closings correspond to the lowest magic numbers of a 2D and 3D harmonic oscillator and at the same time to the number of divalent atoms in close-packed triangles and tetrahedrons. Ab initio molecular dynamics simulations for Na and Mg clusters support the results of the jellium model.
[Pt2Cu34(PET)22Cl4]2–: An Atomically Precise, 10-Electron PtCu Bimetal Nanocluster with a Direct Pt–Pt Bond
2021
Heteroatom-doped metal nanoclusters (NCs) are highly desirable to gain fundamental insights into the effect of doping on the electronic structure and catalytic properties. Unfortunately, their controlled synthesis is highly challenging when the metal atomic sizes are largely different (e.g., Cu and Pt). Here, we design a metal-exchange strategy that enables simultaneous doping and resizing of NCs. Specifically, [Pt2Cu34(PET)22Cl4]2- NC, the first example of a Pt-doped Cu NC, is synthesized by utilizing the unique reactivity of [Cu32(PET)24Cl2H8]2- NC with Pt4+ ions. The single-crystal X-ray structure reveals that two directly bonded Pt atoms occupy the two centers of an unusually interpenet…
[Cu32(PET)24H8Cl2](PPh4)2: A Copper Hydride Nanocluster with a Bisquare Antiprismatic Core
2020
Atomically precise coinage metal (Au, Ag, and Cu) nanoclusters (NCs) have been the subject of immense interest for their intriguing structural, photophysical, and catalytic properties. However, the synthesis of Cu NCs is highly challenging because of low reduction potential and high reactivity of copper, demonstrating the need for new synthetic methods using appropriate ligand combinations. By designing a diamine-assisted synthetic strategy, here we report the synthesis and total structure characterization of a box-like dianionic Cu NC [Cu32(PET)24H8Cl2](PPh4)2 coprotected by 2-phenylethanethiolate (PET), hydride, and chloride ligands. Its crystal structure comprises a rare bisquare antipri…