Search results for "clusters"

showing 10 items of 1274 documents

Core‐Selective Silver‐Doping of Gold Nanoclusters by Surface‐Bound Sulphates on Colloidal Templates: From Synthetic Mechanism to Relaxation Dynamics

2022

Funding Information: This work was carried out under the ERC Advanced grant (DRIVEN, ERC‐2016‐AdG‐742829), Academy of Finland's Centre of Excellence in Life‐Inspired Hybrid Materials (LIBER, 346108), Academy of Finland (No. 321443, 328942, 308647, and 318891) and Photonic Research and Innovation (PREIN) as well as FinnCERES flagships. L.F. and X.C. thanks for support from CSC (IT Center for Science, Finland) for providing computation resources. The authors acknowledge the provision of facilities and technical support by Aalto University OtaNano – Nanomicroscopy Center (Aalto‐NMC). | openaire: EC/H2020/742829/EU//DRIVEN Ultra-small luminescent gold nanoclusters (AuNCs) have gained substantia…

216 Materials engineeringSettore FIS/01 - Fisica Sperimentaletoxicityphotoluminescencedopinggold nanoclusterscellulose nanocrystalsAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic MaterialsAdvanced Optical Materials
researchProduct

The richest superclusters : I Morphology

2007

We study the morphology of the richest superclusters from the catalogues of superclusters of galaxies in the 2dF Galaxy Redshift Survey and compare the morphology of real superclusters with model superclusters in the Millennium Simulation. We use Minkowski functionals and shapefinders to quantify the morphology of superclusters: their sizes, shapes, and clumpiness. We generate empirical models of simple geometry to understand which morphologies correspond to the supercluster shapefinders. We show that rich superclusters have elongated, filamentary shapes with high-density clumps in their core regions. The clumpiness of superclusters is determined using the fourth Minkowski functional $V_3$.…

2dF Galaxy Redshift SurveyPhysicsMorphology (linguistics)Large-scale structure of UniverseMinkowski functionalAstrophysics (astro-ph)FOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsGalaxiesAstrophysicsUNESCO::ASTRONOMÍA Y ASTROFÍSICA:ASTRONOMÍA Y ASTROFÍSICA::Cosmología y cosmogonia [UNESCO]GalaxyCosmologyClustersSpace and Planetary ScienceSuperclusterMinkowski spaceUNESCO::ASTRONOMÍA Y ASTROFÍSICA::Cosmología y cosmogonia:ASTRONOMÍA Y ASTROFÍSICA [UNESCO]Cosmology ; Large-scale structure of Universe ; Galaxies ; Clusters
researchProduct

Ab initio calculations of pure and Co+2-doped MgF2 crystals

2020

This research was partly supported by the Kazakhstan Science Project № AP05134367«Synthesis of nanocrystals in track templates of SiO2/Si for sensory, nano- and optoelectronic applications», as well as by Latvian Research Council project lzp-2018/1-0214. Calculations were performed on Super Cluster (LASC) in the Institute of Solid State Physics (ISSP) of the University of Latvia. Authors are indebted to S. Piskunov for stimulating discussions.

AB INITIO CALCULATIONSNuclear and High Energy PhysicsMaterials scienceSpin statesBand gapAb initioENERGY GAP02 engineering and technologyFLUORINE COMPOUNDS01 natural sciences7. Clean energyMolecular physicsAb initio quantum chemistry methodsCobalt dopant0103 physical sciencesPhysics::Atomic and Molecular Clusters:NATURAL SCIENCES:Physics [Research Subject Categories]MgF2010306 general physicsFluorideInstrumentationCOBALT DOPANTSDopantCRYSTAL ATOMIC STRUCTUREDopingCOBALT COMPOUNDSMAGNESIUM COMPOUNDSDOPANT ENERGY LEVELS021001 nanoscience & nanotechnologyVIBRATIONAL STRUCTURESCALCULATIONSCRYSTALSGROUND STATELinear combination of atomic orbitalsCELL PROLIFERATIONAb initioGROUND STATE LEVELS0210 nano-technologyGround state
researchProduct

Negative thermal expansion in cuprite-type compounds: A combined synchrotron XRPD, EXAFS, and computational study of Cu2O and Ag2O

2006

Cuprite-type oxides (Cu2O and Ag2O) are framework structures composed by two interpenetrated networks of metal-sharing M4O tetrahedra (M = Cu, Ag). Both compounds exhibit a peculiar negative thermal expansion (NTE) behaviour over an extended temperature range (9 240 K for Cu2O, 30-470 K for Ag2O). High-accuracy synchrotron powder diffraction and EXAFS measurements were performed from 10 K up to the decomposition temperature to understand the nature of the NTE effects. The critical comparison of the diffraction and absorption results concerning the temperature dependence of the interatomic distances and of the atomic vibrational parameters proves to be fundamental in defining the local dynam…

ABSORPTION FINE-STRUCTUREPOWDER DIFFRACTIONExtended X-ray absorption fine structureChemistryThermal decompositionCupriteCharge densityGeneral ChemistryAtmospheric temperature rangeCondensed Matter PhysicsThermal expansionCrystallographyChemical bondNegative thermal expansionPhysics::Atomic and Molecular ClustersSCATTERINGRADIATIONGeneral Materials ScienceThermal expansionTEMPERATUREPowder diffractionJournal of Physics and Chemistry of Solids
researchProduct

On the carrier of inertia

2018

A change in momentum will inevitably perturb the all-embracing vacuum, whose reaction we understand as inertia. Since the vacuum's physical properties relate to light, we propose that the vacuum embodies photons, but in pairs without net electromagnetic fields. In this physical form the free space houses energy in balance with the energy of matter in the whole Universe. Likewise, we reason that a local gravitational potential is the vacuum in a local balance with energy that is bound to a body. Since a body couples to the same vacuum universally and locally, we understand that inertial and gravitational masses are identical. By the same token, we infer that gravity and electromagnetism shar…

ANOMALIESPhotonmedia_common.quotation_subjectvacuumUNIVERSEGeneral Physics and AstronomyCosmological constantPHOTONSInertia01 natural sciencesGravitationMomentumGeneral Relativity and Quantum CosmologyGravitational potentialElectromagnetism0103 physical sciences010306 general physics010303 astronomy & astrophysicsCOSMOLOGICAL CONSTANTmedia_commonPhysicsfotonitta114LEAST-ACTIONgravitaatioinertialiike115 Astronomy Space sciencelcsh:QC1-999UniverseTIMEmotion (physical phenomena)GALAXIESClassical mechanicsgravitationWAVEPRINCIPLECLUSTERSlcsh:PhysicsAIP Advances
researchProduct

Large numbers of cold positronium atoms created in laser-selected Rydberg states using resonant charge exchange

2016

Lasers are used to control the production of highly excited positronium atoms (Ps*). The laser light excites Cs atoms to Rydberg states that have a large cross section for resonant charge-exchange collisions with cold trapped positrons. For each trial with 30 million trapped positrons, more than 700 000 of the created Ps* have trajectories near the axis of the apparatus, and are detected using Stark ionization. This number of Ps* is 500 times higher than realized in an earlier proof-of-principle demonstration (2004 Phys. Lett. B 597 257). A second charge exchange of these near-axis Ps* with trapped antiprotons could be used to produce cold antihydrogen, and this antihydrogen production is e…

ANTIHYDROGENGeneral PhysicsAntiparticlepositronium0205 Optical Physics0307 Theoretical And Computational ChemistryPLASMASCONFINEMENTPhysics Atomic Molecular & Chemical01 natural sciences010305 fluids & plasmasPositroniumsymbols.namesake0202 Atomic Molecular Nuclear Particle And Plasma PhysicsIonization0103 physical sciencesPhysics::Atomic and Molecular ClustersPhysics::Atomic Physics010306 general physicsAntihydrogenpositronsPhysicsCondensed Matter::Quantum GasesScience & TechnologyPhysicsOpticsRydberg statesCondensed Matter PhysicsAtomic and Molecular Physics and Opticscharge-exchangeExcited stateAntimatterPhysical SciencesRydberg formulasymbolsAtomic physicsLepton
researchProduct

Stabilized Naked Sub-nanometric Cu Clusters within a Polymeric Film Catalyze C-N, C-C, C-O, C-S, and C-P Bond-Forming Reactions

2015

[EN] Sub-nanometric Cu clusters formed by endogenous reduction of Cu salts and Cu nanoparticles are active and selective catalysts for C−N, C−C, C−O, C−S, and C−P bond-forming reactions. Sub-nanometric Cu clusters have also been generated within a polymeric film and stored with full stability for months. In this way, they are ready to be used on demand and maintain high activity (TONs up to 104 ) and selectivity for the above reactions. A potential mechanism for the formation of the sub-nanometric clusters and their electronic nature is presented.

ARYL HALIDESTECNOLOGIA DE ALIMENTOSDIAMINE LIGANDSULLMANNHeterogeneous catalysisBiochemistryCatalysisCoupling reactionCatalysisMECHANISMSColloid and Surface ChemistryQUIMICA ORGANICAOn demandPolymer chemistryOxidationHigh activityOrganic chemistryPotential mechanismTEMPERATURECu nanoparticlesChemistryGeneral ChemistryHETEROGENEOUS CATALYSISCROSS-COUPLING REACTIONSGOLD CLUSTERSSelectivityCOPPER CLUSTERS
researchProduct

Magic triangular and tetrahedral clusters

1997

Using the methods of density functional theory and the jellium model we show that clusters with triangular [in two dimensions (2D)] or tetrahedral [in three dimensions (3D)] shapes have a strong shell structure and enhanced stability. Moreover, the shell closings correspond to the lowest magic numbers of a 2D and 3D harmonic oscillator and at the same time to the number of divalent atoms in close-packed triangles and tetrahedrons. Ab initio molecular dynamics simulations for Na and Mg clusters support the results of the jellium model.

Ab initio molecular dynamicsPhysicsJelliumPhysics::Atomic and Molecular ClustersMagic (programming)Shell (structure)TetrahedronDensity functional theoryAtomic physicsHarmonic oscillatorPhysical Review B
researchProduct

[Pt2Cu34(PET)22Cl4]2–: An Atomically Precise, 10-Electron PtCu Bimetal Nanocluster with a Direct Pt–Pt Bond

2021

Heteroatom-doped metal nanoclusters (NCs) are highly desirable to gain fundamental insights into the effect of doping on the electronic structure and catalytic properties. Unfortunately, their controlled synthesis is highly challenging when the metal atomic sizes are largely different (e.g., Cu and Pt). Here, we design a metal-exchange strategy that enables simultaneous doping and resizing of NCs. Specifically, [Pt2Cu34(PET)22Cl4]2- NC, the first example of a Pt-doped Cu NC, is synthesized by utilizing the unique reactivity of [Cu32(PET)24Cl2H8]2- NC with Pt4+ ions. The single-crystal X-ray structure reveals that two directly bonded Pt atoms occupy the two centers of an unusually interpenet…

Absorption spectroscopy010405 organic chemistrySuperatomDopingGeneral ChemistryElectronic structure010402 general chemistry01 natural sciencesBiochemistryCatalysis0104 chemical sciencesNanoclustersSilanolchemistry.chemical_compoundCrystallographyColloid and Surface ChemistrychemistryMoleculeDensity functional theoryJournal of the American Chemical Society
researchProduct

[Cu32(PET)24H8Cl2](PPh4)2: A Copper Hydride Nanocluster with a Bisquare Antiprismatic Core

2020

Atomically precise coinage metal (Au, Ag, and Cu) nanoclusters (NCs) have been the subject of immense interest for their intriguing structural, photophysical, and catalytic properties. However, the synthesis of Cu NCs is highly challenging because of low reduction potential and high reactivity of copper, demonstrating the need for new synthetic methods using appropriate ligand combinations. By designing a diamine-assisted synthetic strategy, here we report the synthesis and total structure characterization of a box-like dianionic Cu NC [Cu32(PET)24H8Cl2](PPh4)2 coprotected by 2-phenylethanethiolate (PET), hydride, and chloride ligands. Its crystal structure comprises a rare bisquare antipri…

Absorption spectroscopyHydrideChemistryLigandGeneral ChemistryElectronic structureCrystal structure010402 general chemistry01 natural sciencesBiochemistryCatalysis0104 chemical sciencesNanoclustersCrystallographychemistry.chemical_compoundColloid and Surface ChemistryCopper hydrideDensity functional theoryJournal of the American Chemical Society
researchProduct