6533b831fe1ef96bd129854a
RESEARCH PRODUCT
Core‐Selective Silver‐Doping of Gold Nanoclusters by Surface‐Bound Sulphates on Colloidal Templates: From Synthetic Mechanism to Relaxation Dynamics
Sourov ChandraAlice SciortinoShruti ShandilyaLincan FangXi ChenNull NonappaHua JiangLeena‐sisko JohanssonMarco CannasJanne RuokolainenRobin H. A. RasFabrizio MessinaBo PengOlli Ikkalasubject
216 Materials engineeringSettore FIS/01 - Fisica Sperimentaletoxicityphotoluminescencedopinggold nanoclusterscellulose nanocrystalsAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic Materialsdescription
Funding Information: This work was carried out under the ERC Advanced grant (DRIVEN, ERC‐2016‐AdG‐742829), Academy of Finland's Centre of Excellence in Life‐Inspired Hybrid Materials (LIBER, 346108), Academy of Finland (No. 321443, 328942, 308647, and 318891) and Photonic Research and Innovation (PREIN) as well as FinnCERES flagships. L.F. and X.C. thanks for support from CSC (IT Center for Science, Finland) for providing computation resources. The authors acknowledge the provision of facilities and technical support by Aalto University OtaNano – Nanomicroscopy Center (Aalto‐NMC). | openaire: EC/H2020/742829/EU//DRIVEN Ultra-small luminescent gold nanoclusters (AuNCs) have gained substantial interest owing to their low photobleaching and high biocompatibility. While the substitution of silver for gold at the central core of AuNCs has shown significant augmentation of photoluminescence with enhanced photostability, selective replacement of the central atom by silver is, however, energetically inhibited. Herein, a new strategy for in situ site-selective Ag-doping exclusively at the central core of AuNCs using sulphated colloidal surfaces as the templates is presented. This approach exceedingly improves the photoluminescence quantum efficiency of AuNCs by eliminating nonradiative losses in the multi-step relaxation cascade populating the emissive state. Density functional theory predicts the mechanism of specific doping at the central core, endorsing the preferential bonding between Ag+ ions and sulphates in water. Finally, the generic nature of the templating concept to allow core-specific doping of nanoclusters is unraveled. Peer reviewed
year | journal | country | edition | language |
---|---|---|---|---|
2022-11-01 | Advanced Optical Materials |