Search results for "complementary DNA"
showing 10 items of 243 documents
Highly efficient construction of infectious viroid-derived clones
2019
[Background] Viroid research generally relies on infectious cDNA clones that consist of dimers of the entire viroid sequence. At present, those dimers are generated by self-ligation of monomeric cDNA, a strategy that presents several disadvantages: (i) low efficiency, (ii) it is a non-oriented reaction requiring tedious screenings and (iii) additional steps are required for cloning into a binary vector for agroinfiltration or for in vitro RNA production.
cDNA sequences of two arylphorin subunits of an insect biliprotein: phylogenetic differences and gene duplications during evolution of hexamerins-imp…
2016
Arylphorins represent a conserved class of hexameric ∼500 kDa insect hemolymph glycoproteins, rich in aromatic amino acids, which are produced in large quantities at the larval stage as reserves for metamorphosis and egg development. The recently isolated arylphorin from the moth Cerura vinula is unique in being complexed to a novel farnesylated bilin. Protein sequencing suggested the presence of two different ∼85 kDa subunits. Here, we report the complete coding sequences of two cDNAs encoding two arylphorins subunits with 67% identity and calculated physicochemical characteristics in agreement with the isolated holoprotein. Our phylogenetic analyses of the hexamerins revealed monophyletic…
Subcellular localization and purification of a p-hydroxyphenylpyruvate dioxygenase from cultured carrot cells and characterization of the correspondi…
1997
p-Hydroxyphenylpyruvate dioxygenase catalyses the transformation of p-hydroxyphenylpyruvate into homogentisate. In plants this enzyme has a crucial role because homogentisate is the aromatic precursor of all prenylquinones. Furthermore this enzyme was recently identified as the molecular target for new families of potent herbicides. In this study we examine precisely the localization of p-hydroxyphenylpyruvate dioxygenase activity within carrot cells. Our results provide evidence that, in cultured carrot cells, p-hydroxyphenylpyruvate dioxygenase is associated with the cytosol. Purification and SDS/PAGE analysis of this enzyme revealed that its activity is associated with a polypeptide of 4…
Isolation and characterization of a Vitis vinifera transcription factor, VvWRKY1, and its effect on responses to fungal pathogens in transgenic tobac…
2007
International audience; Pathogen attack represents a major problem for viticulture and for agriculture in general. At present, the use of phytochemicals is more and more restrictive, and therefore it is becoming essential to control disease by having a thorough knowledge of resistance mechanisms. The present work focused on the trans-regulatory proteins potentially involved in the control of the plant defence response, the WRKY proteins. A full-length cDNA, designated VvWRKY1, was isolated from a grape berry library (Vitis vinifera L. cv. Cabernet Sauvignon). It encodes a polypeptide of 151 amino acids whose structure is characteristic of group IIc WRKY proteins. VvWRKY1 gene expression in …
Molecular determinants of the Arabidopsis AKT1 K+ channel ionic selectivity investigated by expression in yeast of randomly mutated channels
1999
International audience; The Avabidopsis thaliana K+ channel AKT1 was expressed in a yeast strain defective for K+ uptake at low K+ concentrations (<3 mM). Besides restoring K+ transport in this strain, AKT1 expression increased its tolerance to salt (NaCl or LiCl), whatever the external K+ concentration used (50 mu M, 5 mM, or 50 mM), We took advantage of the latter phenomenon for screening a library of channels randomly mutated in the region that shares homologies with the pore forming domain (the so-called P domain) of animal K+ channels (Shaker family). Cassette mutagenesis was performed using a degenerate oligonucleotide that was designed to ensure, theoretically, a single mutation per …
Current view of nitric oxide-responsive genes in plants
2009
International audience; Significant efforts have been directed towards the identification of genes differentially regulated through nitric oxide (NO)-dependent processes. These efforts comprise the use of medium- and large-scale transcriptomic analyses including microarray and cDNA-amplification fragment length polymorphism (AFLP) approaches. Numerous putative NO-responsive genes have been identified in plant tissues and cell suspensions with transcript levels altered by artificially released NO, or endogenously produced. Comparative analysis of the data from such transcriptomic analyses in Arabidopsis reveals that a significant part of these genes encode proteins related to plant adaptive …
Construction and validation of cDNA-based Mt6k-RIT macro- and microarrays to explore root endosymbioses in the model legume Medicago truncatula
2004
To construct macro- and microarray tools suitable for expression profiling in root endosymbioses of the model legume Medicago truncatula, we PCR-amplified a total of 6048 cDNA probes representing genes expressed in uninfected roots, mycorrhizal roots and young root nodules [Nucleic Acids Res. 30 (2002) 5579]. Including additional probes for either tissue-specific or constitutively expressed control genes, 5651 successfully amplified gene-specific probes were used to grid macro- and to spot microarrays designated Mt6k-RIT (M. truncatula 6k root interaction transcriptome). Subsequent to a technical validation of microarray printing, we performed two pilot expression profiling experiments usin…
The plasma membrane oxidase NtrbohD is responsible for AOS production in elicited tobacco cells
2002
Summary A cDNA encoding a protein, NtrbohD, located on the plasma membrane and homologue to the flavocytochrome of the neutrophil NADPH oxidase, was cloned in tobacco. The corresponding mRNA was accumulated when tobacco leaves and cells were treated with the fungal elicitor cryptogein. After elicitation with cryptogein, tobacco cells transformed with antisense constructs of NtrbohD showed the same extracellular alkalinization as the control, but no longer produced active oxygen species (AOS). This work represents the first demonstration of the function of a homologue of gp91–phox in AOS production in elicited tobacco cells.
High-throughput sequencing for 1-methyladenosine (m1A) mapping in RNA
2016
Abstract Detection and mapping of modified nucleotides in RNAs is a difficult and laborious task. Several physico-chemical approaches based on differential properties of modified nucleotides can be used, however, most of these methods do not allow high-throughput analysis. Here we describe in details a method for mapping of rather common 1-methyladenosine (m1A) residues using high-throughput next generation sequencing (NGS). Since m1A residues block primer extension during reverse transcription (RT), the accumulation of abortive products as well as the nucleotide misincorporation can be detected in the sequencing data. The described library preparation protocol allows to capture both types …
5' and 3' RACE Method to Obtain Full-Length 5' and 3' Ends of Ciona robusta Macrophage Migration Inhibitory Factors Mif1 and Mif2 cDNA
2019
The 5' and 3' RACE is a method to obtain full-length 5' and 3' ends of cDNA using known cDNA sequences from expressed sequence tags (ESTs), subtracted cDNA, differential display, or library screening. Here is described the identification of full-length 5' and 3' ends of Ciona robusta Mif1 and Mif2 cDNA by using 5' and 3' RACE method.