Search results for "cond-mat.quant-gas"

showing 10 items of 120 documents

Observation of a narrow inner-shell orbital transition in atomic erbium at 1299 nm

2021

We report on the observation and coherent excitation of atoms on the narrow inner-shell orbital transition, connecting the erbium ground state $[\mathrm{Xe}] 4f^{12} (^3\text{H}_6)6s^{2}$ to the excited state $[\mathrm{Xe}] 4f^{11}(^4\text{I}_{15/2})^05d (^5\text{D}_{3/2}) 6s^{2} (15/2,3/2)^0_7$. This transition corresponds to a wavelength of 1299 nm and is optically closed. We perform high-resolution spectroscopy to extract the $g_J$-factor of the $1299$-nm state and to determine the frequency shift for four bosonic isotopes. We further demonstrate coherent control of the atomic state and extract a lifetime of 178(19) ms which corresponds to a linewidth of 0.9(1) Hz. The experimental findi…

Atomic Physics (physics.atom-ph)chemistry.chemical_elementFOS: Physical sciences01 natural sciences010305 fluids & plasmasPhysics - Atomic PhysicsErbium[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph]Polarizability0103 physical sciences010306 general physicsSpectroscopyPhysicsQuantum Physics[PHYS.PHYS.PHYS-ATOM-PH]Physics [physics]/Physics [physics]/Atomic Physics [physics.atom-ph]3. Good healthWavelengthchemistryCoherent controlQuantum Gases (cond-mat.quant-gas)Excited state[PHYS.PHYS.PHYS-CHEM-PH]Physics [physics]/Physics [physics]/Chemical Physics [physics.chem-ph]Atomic physicsGround stateQuantum Physics (quant-ph)Condensed Matter - Quantum GasesExcitation
researchProduct

Anisotropic light-shift and magic-polarization of the intercombination line of Dysprosium atoms in a far-detuned dipole trap

2018

We characterize the anisotropic differential ac-Stark shift for the Dy $626$ nm intercombination transition, induced in a far-detuned $1070$ nm optical dipole trap, and observe the existence of a "magic polarization" for which the polarizabilities of the ground and excited states are equal. From our measurements we extract both the scalar and tensorial components of the dynamic dipole polarizability for the excited state, $\alpha_E^\text{s} = 188 (12)\,\alpha_\text{0}$ and $\alpha_E^\text{t} = 34 (12)\,\alpha_\text{0}$, respectively, where $\alpha_\text{0}$ is the atomic unit for the electric polarizability. We also provide a theoretical model allowing us to predict the excited state polari…

Atomic Physics (physics.atom-ph)chemistry.chemical_elementFOS: Physical sciences01 natural sciencesAtomic units010305 fluids & plasmasPhysics - Atomic Physics[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph]Polarizability0103 physical sciencesPhysics::Atomic and Molecular ClustersPhysics::Atomic Physics010306 general physicsAnisotropyDoppler coolingPhysicsCondensed Matter::Quantum GasesQuantum Physics[PHYS.PHYS.PHYS-ATOM-PH]Physics [physics]/Physics [physics]/Atomic Physics [physics.atom-ph]Polarization (waves)3. Good healthDipolechemistryQuantum Gases (cond-mat.quant-gas)Excited stateDysprosium[PHYS.PHYS.PHYS-CHEM-PH]Physics [physics]/Physics [physics]/Chemical Physics [physics.chem-ph]Atomic physicsCondensed Matter - Quantum GasesQuantum Physics (quant-ph)
researchProduct

Driven Bose-Hubbard Model with a Parametrically Modulated Harmonic Trap

2016

We investigate a one-dimensional Bose–Hubbard model in a parametrically driven global harmonic trap. The delicate interplay of both the local interaction of the atoms in the lattice and the driving of the global trap allows us to control the dynamical stability of the trapped quantum many-body state. The impact of the atomic interaction on the dynamical stability of the driven quantum many-body state is revealed in the regime of weak interaction by analyzing a discretized Gross–Pitaevskii equation within a Gaussian variational ansatz, yielding a Mathieu equation for the condensate width. The parametric resonance condition is shown to be modified by the atom interaction strength. In particul…

Bose–Hubbard modelquantum many-body systemsFOS: Physical sciencesHarmonic (mathematics)02 engineering and technologyBose–Hubbard modelWeak interaction01 natural sciencessymbols.namesakeQuantum mechanics0103 physical sciencesAtomquantum gas010306 general physicsQuantumAnsatzPhysicsCondensed Matter::Quantum Gasesta114021001 nanoscience & nanotechnologyMathieu functionQuantum Gases (cond-mat.quant-gas)symbolsParametric oscillator0210 nano-technologyCondensed Matter - Quantum Gasesharmonic trap
researchProduct

Probing the bond order wave phase transitions of the ionic Hubbard model by superlattice modulation spectroscopy

2017

An exotic phase, the bond order wave, characterized by the spontaneous dimerization of the hopping, has been predicted to exist sandwiched between the band and Mott insulators in systems described by the ionic Hubbard model. Despite growing theoretical evidences, this phase still evades experimental detection. Given the recent realization of the ionic Hubbard model in ultracold atomic gases, we propose here to detect the bond order wave using superlattice modulation spectroscopy. We demonstrate, with the help of time-dependent density-matrix renormalization group and bosonization, that this spectroscopic approach reveals characteristics of both the Ising and Kosterlitz-Thouless transitions …

BosonizationHubbard model[PHYS.COND.GAS]Physics [physics]/Condensed Matter [cond-mat]/Quantum Gases [cond-mat.quant-gas]SuperlatticeGeneral Physics and AstronomyIonic bondingFOS: Physical sciences01 natural sciencesCondensed Matter - Strongly Correlated ElectronsPhysics and Astronomy (all)0103 physical sciencesBosonizationCold atoms010306 general physicsPhysicsCondensed Matter::Quantum GasesCondensed matter physicsDensity Matrix Renormalization GroupStrongly Correlated Electrons (cond-mat.str-el)010308 nuclear & particles physicsMott insulatorBerezinskii-Kosterlitz-Thouless transitionIsing transitionRenormalization groupBond orderQuantum Gases (cond-mat.quant-gas)Ising modelCondensed Matter::Strongly Correlated ElectronsCondensed Matter - Quantum Gases
researchProduct

Accessing finite momentum excitations of the one-dimensional Bose-Hubbard model using superlattice modulation spectroscopy

2018

We investigate the response to superlattice modulation of a bosonic quantum gas confined to arrays of tubes emulating the one-dimensional Bose-Hubbard model. We demonstrate, using both time-dependent density matrix renormalization group and linear response theory, that such a superlattice modulation gives access to the excitation spectrum of the Bose-Hubbard model at finite momenta. Deep in the Mott-insulator, the response is characterized by a narrow energy absorption peak at a frequency approximately corresponding to the onsite interaction strength between bosons. This spectroscopic technique thus allows for an accurate measurement of the effective value of the interaction strength. On th…

BosonizationPhysicsCondensed Matter::Quantum GasesCondensed matter physics[PHYS.COND.GAS]Physics [physics]/Condensed Matter [cond-mat]/Quantum Gases [cond-mat.quant-gas]Density matrix renormalization groupMott insulatorSuperlatticeFOS: Physical sciencesBose–Hubbard model01 natural sciencesAtomic and Molecular Physics and Optics010305 fluids & plasmasSuperfluidityBose-Hubbard modelQuantum Gases (cond-mat.quant-gas)Atomic and Molecular PhysicsDMRG0103 physical sciencesBosonizationand Optics010306 general physicsCondensed Matter - Quantum GasesFrequency modulationBoson
researchProduct

Correlation Dynamics During a Slow Interaction Quench in a One-Dimensional Bose Gas

2014

We investigate the response of a one-dimensional Bose gas to a slow increase of its interaction strength. We focus on the rich dynamics of equal-time single-particle correlations treating the Lieb-Liniger model within a bosonization approach and the Bose-Hubbard model using the time-dependent density-matrix renormalization group method. For short distances, correlations follow a power-law with distance with an exponent given by the adiabatic approximation. In contrast, for long distances, correlations decay algebraically with an exponent understood within the sudden quench approximation. This long distance regime is separated from an intermediate distance one by a generalized Lieb-Robinson …

BosonizationPhysicsCondensed Matter::Quantum GasesLieb-Robinson boundBose gas[PHYS.COND.GAS]Physics [physics]/Condensed Matter [cond-mat]/Quantum Gases [cond-mat.quant-gas]General Physics and AstronomyFOS: Physical sciencesTomonaga-Luttinger LiquidRenormalization groupPower lawExponential functionAdiabatic theoremequal-time Green's functionsQuantum Gases (cond-mat.quant-gas)Light coneQuantum mechanicsinteraction quenchExponentCondensed Matter - Quantum GasesPACS: 67.85.−d 03.75.Kk 03.75.Lm 67.25.D−
researchProduct

Topological Devil's staircase in atomic two-leg ladders

2019

Abstract We show that a hierarchy of topological phases in one dimension—a topological Devil’s staircase—can emerge at fractional filling fractions in interacting systems, whose single-particle band structure describes a topological or a crystalline topological insulator. Focusing on a specific example in the BDI class, we present a field-theoretical argument based on bosonization that indicates how the system, as a function of the filling fraction, hosts a series of density waves. Subsequently, based on a numerical investigation of the low-lying energy spectrum, Wilczek–Zee phases, and entanglement spectra, we show that they are symmetry protected topological phases. In sharp contrast to t…

Bosonizationcold-atoms; fractional topological phase; strongly correlated; two-leg ladderGeneral Physics and AstronomyFOS: Physical sciencesQuantum entanglementcold-atomTopology01 natural sciencesSettore FIS/03 - Fisica della Materia010305 fluids & plasmasUltracold atom0103 physical sciencesddc:530Limit (mathematics)010306 general physicsElectronic band structurePhysicsstrongly correlatedSeries (mathematics)Symmetry (physics)cold-atomsQuantum Gases (cond-mat.quant-gas)Topological insulatorfractional topological phaseCondensed Matter - Quantum Gasestwo-leg ladder
researchProduct

Supersolid-superfluid phase separation in the extended Bose-Hubbard model

2021

Recent studies have suggested a new phase in the extended Bose-Hubbard model in one dimension at integer filling [1,2]. In this work, we show that this new phase is phase-separated into a supersolid and superfluid part, generated by mechanical instability. Numerical simulations are performed by means of the density matrix renormalization group algorithm in terms of matrix product states. In the phase-separated phase and the adjacent homogeneous superfluid and supersolid phases, we find peculiar spatial patterns in the entanglement spectrum and string-order correlation functions and show that they survive in the thermodynamic limit. In particular, we demonstrate that the elementary excitatio…

Condensed Matter::Quantum GasesPhysicsDensity matrixQuantum PhysicsHubbard modelSuperfluïdesaDensity matrix renormalization groupCondensed matterFOS: Physical sciencesBose–Hubbard modelMatèria condensada01 natural sciences010305 fluids & plasmasSuperfluiditySupersolidQuantum Gases (cond-mat.quant-gas)SuperfluidityLuttinger liquidQuantum mechanics0103 physical sciencesThermodynamic limitCondensed Matter - Quantum GasesQuantum Physics (quant-ph)010306 general physicsLuttinger parameterPhysical Review B
researchProduct

Anomalous Expansion of Attractively Interacting Fermionic Atoms in an Optical Lattice

2010

Strong correlations can dramatically modify the thermodynamics of a quantum many-particle system. Especially intriguing behaviour can appear when the system adiabatically enters a strongly correlated regime, for the interplay between entropy and strong interactions can lead to counterintuitive effects. A well known example is the so-called Pomeranchuk effect, occurring when liquid 3He is adiabatically compressed towards its crystalline phase. Here, we report on a novel anomalous, isentropic effect in a spin mixture of attractively interacting fermionic atoms in an optical lattice. As we adiabatically increase the attraction between the atoms we observe that the gas, instead of contracting, …

Condensed Matter::Quantum GasesPhysicsOptical latticeMultidisciplinaryCondensed matter physicsHubbard modelIsentropic processStrongly Correlated Electrons (cond-mat.str-el)High Energy Physics::LatticeFOS: Physical sciencesBose–Hubbard modelCondensed Matter - Strongly Correlated ElectronsQuantum Gases (cond-mat.quant-gas)Quantum mechanicsLattice (order)Condensed Matter - Quantum GasesQuantum
researchProduct

Mott transitions in ternary flavor mixtures of ultracold fermions on optical lattices

2009

Ternary flavor mixtures of ultracold fermionic atoms in an optical lattice are studied in the case of equal, repulsive on-site interactions U>0. The corresponding SU(3) invariant Hubbard model is solved numerically exactly within dynamical mean-field theory using multigrid Hirsch-Fye quantum Monte Carlo simulations. We establish Mott transitions close to integer filling at low temperatures and show that the associated signatures in the compressibility and pair occupancy persist to high temperatures, i.e., should be accessible to experiments. In addition, we present spectral functions and discuss the properties of a ``semi-compressible'' state observed for large U near half filling.

Condensed Matter::Quantum GasesPhysicsOptical latticeStrongly Correlated Electrons (cond-mat.str-el)Hubbard modelCondensed matter physicsQuantum Monte CarloFOS: Physical sciencesFermionAtomic and Molecular Physics and OpticsCondensed Matter - Strongly Correlated ElectronsMultigrid methodQuantum Gases (cond-mat.quant-gas)Quantum mechanicsCompressibilityInvariant (mathematics)Condensed Matter - Quantum GasesTernary operationPhysical Review A
researchProduct