6533b86efe1ef96bd12cac35

RESEARCH PRODUCT

Anisotropic light-shift and magic-polarization of the intercombination line of Dysprosium atoms in a far-detuned dipole trap

Jean DalibardMaxence LepersMaxence LepersAlexandre EvrardVasiliy MakhalovThomas ChalopinRaphael LopesOlivier DulieuJ.-f. WyartJ.-f. WyartChayma BouazzaSylvain NascimbeneAdam Barker

subject

Atomic Physics (physics.atom-ph)chemistry.chemical_elementFOS: Physical sciences01 natural sciencesAtomic units010305 fluids & plasmasPhysics - Atomic Physics[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph]Polarizability0103 physical sciencesPhysics::Atomic and Molecular ClustersPhysics::Atomic Physics010306 general physicsAnisotropyDoppler coolingPhysicsCondensed Matter::Quantum GasesQuantum Physics[PHYS.PHYS.PHYS-ATOM-PH]Physics [physics]/Physics [physics]/Atomic Physics [physics.atom-ph]Polarization (waves)3. Good healthDipolechemistryQuantum Gases (cond-mat.quant-gas)Excited stateDysprosium[PHYS.PHYS.PHYS-CHEM-PH]Physics [physics]/Physics [physics]/Chemical Physics [physics.chem-ph]Atomic physicsCondensed Matter - Quantum GasesQuantum Physics (quant-ph)

description

We characterize the anisotropic differential ac-Stark shift for the Dy $626$ nm intercombination transition, induced in a far-detuned $1070$ nm optical dipole trap, and observe the existence of a "magic polarization" for which the polarizabilities of the ground and excited states are equal. From our measurements we extract both the scalar and tensorial components of the dynamic dipole polarizability for the excited state, $\alpha_E^\text{s} = 188 (12)\,\alpha_\text{0}$ and $\alpha_E^\text{t} = 34 (12)\,\alpha_\text{0}$, respectively, where $\alpha_\text{0}$ is the atomic unit for the electric polarizability. We also provide a theoretical model allowing us to predict the excited state polarizability and find qualitative agreement with our observations. Furthermore, we utilize our findings to optimize the efficiency of Doppler cooling of a trapped gas, by controlling the sign and magnitude of the inhomogeneous broadening of the optical transition. The resulting initial gain of the collisional rate allows us, after forced evaporation cooling, to produce a quasi-pure Bose-Einstein condensate of $^{162}$Dy with $3\times 10^4$ atoms.

https://dx.doi.org/10.48550/arxiv.1805.06878