Search results for "cond-mat.soft"

showing 10 items of 375 documents

Effect of mixing and spatial dimension on the glass transition

2009

We study the influence of composition changes on the glass transition of binary hard disc and hard sphere mixtures in the framework of mode coupling theory. We derive a general expression for the slope of a glass transition line. Applied to the binary mixture in the low concentration limits, this new method allows a fast prediction of some properties of the glass transition lines. The glass transition diagram we find for binary hard discs strongly resembles the random close packing diagram. Compared to 3D from previous studies, the extension of the glass regime due to mixing is much more pronounced in 2D where plasticization only sets in at larger size disparities. For small size disparitie…

Materials sciencepacs:82.70.DdCondensed matter physicsStatistical Mechanics (cond-mat.stat-mech)business.industryDiagramRandom close packBinary numberFOS: Physical sciencesCondensed Matter - Soft Condensed MatterCondensed Matter::Disordered Systems and Neural NetworksCondensed Matter::Soft Condensed MatterOpticsPhase (matter)Mode couplingSoft Condensed Matter (cond-mat.soft)ddc:530Glass transitionbusinesspacs:64.70.Q-Mixing (physics)Condensed Matter - Statistical Mechanicspacs:64.70.PLine (formation)
researchProduct

Communication versus waterproofing: the physics of insect cuticular hydrocarbons

2019

Understanding the evolution of complex traits is among the major challenges in biology. One such trait is the cuticular hydrocarbon (CHC) layer in insects. It protects against desiccation and provides communication signals, especially in social insects. CHC composition is highly diverse within and across species. To understand the adaptive value of this chemical diversity, we must understand how it affects biological functionality. So far, CHCs received ample research attention, but their physical properties were little studied. We argue that these properties determine their biological functionality, and are vital to understand how CHC composition affects their adaptive value. We investigat…

0106 biological sciencesAdaptive valuePhysiologymedia_common.quotation_subjectInsectAquatic ScienceBiology010603 evolutionary biology01 natural sciences03 medical and health sciencesSpecies SpecificityFreezingAnimalsMolecular BiologymicrorheologyEcology Evolution Behavior and SystematicsComputingMilieux_MISCELLANEOUS030304 developmental biologymedia_commonPhysics0303 health sciencesCalorimetry Differential ScanningAntsViscosityHydrocarbonsAnimal CommunicationInsect ScienceChemical diversitycuticular hydrocarbonAnimal Science and ZoologyRheologyBiological system[PHYS.COND.CM-SCM]Physics [physics]/Condensed Matter [cond-mat]/Soft Condensed Matter [cond-mat.soft]
researchProduct

Brownian dynamics simulations with hard-body interactions: Spherical particles

2012

A novel approach to account for hard-body interactions in (overdamped) Brownian dynamics simulations is proposed for systems with non-vanishing force fields. The scheme exploits the analytically known transition probability for a Brownian particle on a one-dimensional half-line. The motion of a Brownian particle is decomposed into a component that is affected by hard-body interactions and into components that are unaffected. The hard-body interactions are incorporated by replacing the affected component of motion by the evolution on a half-line. It is discussed under which circumstances this approach is justified. In particular, the algorithm is developed and formulated for systems with spa…

PhysicsNumerical analysisFOS: Physical sciencesGeneral Physics and AstronomyProteinsComputational Physics (physics.comp-ph)Condensed Matter - Soft Condensed MatterModels BiologicalDiffusionMotionProbability theoryModels ChemicalProtein Interaction MappingBrownian dynamicsSoft Condensed Matter (cond-mat.soft)Computer SimulationStatistical physicsColloidsPhysical and Theoretical ChemistryPhysics - Computational PhysicsBrownian motionAlgorithms
researchProduct

Computing absolute free energies of disordered structures by molecular simulation

2009

We present a Monte Carlo simulation technique by which the free energy of disordered systems can be computed directly. It is based on thermodynamic integration. The central idea is to construct an analytically solvable reference system from a configuration which is representative for the state of interest. The method can be applied to lattice models (e.g., the Ising model) as well as off-lattice molecular models. We focus mainly on the more challenging off-lattice case. We propose a Monte Carlo algorithm, by which the thermodynamic integration path can be sampled efficiently. At the examples of the hard sphere liquid and a hard disk solid with a defect, we discuss several properties of the …

PhysicsStatistical Mechanics (cond-mat.stat-mech)Monte Carlo method: Physics [G04] [Physical chemical mathematical & earth Sciences]General Physics and AstronomyThermodynamic integrationFOS: Physical sciencesMolecular simulationCondensed Matter - Soft Condensed Matter: Physique [G04] [Physique chimie mathématiques & sciences de la terre]Lattice (order)Soft Condensed Matter (cond-mat.soft)Free energiesIsing modelStatistical physicsPhysical and Theoretical ChemistryCondensed Matter - Statistical MechanicsMonte Carlo algorithm
researchProduct

Do the contact angle and line tension of surface-attached droplets depend on the radius of curvature?

2018

Results from Monte Carlo simulations of wall-attached droplets in the three-dimensional Ising lattice gas model and in a symmetric binary Lennard-Jones fluid, confined by antisymmetric walls, are analyzed, with the aim to estimate the dependence of the contact angle $(\Theta)$ on the droplet radius $(R)$ of curvature. Sphere-cap shape of the wall-attached droplets is assumed throughout. An approach, based purely on "thermodynamic" observables, e.g., chemical potential, excess density due to the droplet, etc., is used, to avoid ambiguities in the decision which particles belong (or do not belong, respectively) to the droplet. It is found that the results are compatible with a variation $[\Th…

Materials scienceStatistical Mechanics (cond-mat.stat-mech)Tension (physics)Antisymmetric relationMonte Carlo methodNucleationFOS: Physical sciences02 engineering and technologyMechanicsCondensed Matter - Soft Condensed Matter021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesRadius of curvature (optics)Contact anglePhysics::Fluid Dynamics0103 physical sciencesThermodynamic limitSoft Condensed Matter (cond-mat.soft)General Materials Science010306 general physics0210 nano-technologyCondensed Matter - Statistical MechanicsLine (formation)
researchProduct

Equilibrium fluid-crystal interfacial free energy of bcc-crystallizing aqueous suspensions of polydisperse charged spheres

2015

The interfacial free energy is a central quantity in crystallization from the meta-stable melt. In suspensions of charged colloidal spheres, nucleation and growth kinetics can be accurately measured from optical experiments. In previous work, from this data effective non-equilibrium values for the interfacial free energy between the emerging bcc-nuclei and the adjacent melt in dependence on the chemical potential difference between melt phase and crystal phase were derived using classical nucleation theory. A strictly linear increase of the interfacial free energy was observed as a function of increased meta-stability. Here, we further analyze this data for five aqueous suspensions of charg…

fluid-crystalMaterials scienceNucleationFOS: Physical sciencesThermodynamicsNon-equilibrium thermodynamicsCondensed Matter - Soft Condensed Matter01 natural scienceslaw.inventionColloidlawMetastability0103 physical sciencesCrystallization010306 general physicsCondensed Matter - Statistical MechanicsCondensed Matter - Materials ScienceAqueous solutionStatistical Mechanics (cond-mat.stat-mech)010304 chemical physicsMaterials Science (cond-mat.mtrl-sci)Condensed Matter::Soft Condensed Matterpolydisperseinterfacial free energySoft Condensed Matter (cond-mat.soft)SPHERESClassical nucleation theoryPhysical Review E
researchProduct

Polymer‐Based Composites for Engineering Organic Memristive Devices

2022

Memristive materials are related to neuromorphic applications as they can combine information processing with memory storage in a single computational element, just as biological neurons. Many of these bioinspired materials emulate the characteristics of memory and learning processes that happen in the brain. In this work, we report the memristive properties of a two-terminal (2-T) organic device based on ionic migration mediated by an ion-transport polymer. The material possesses unique memristive properties: it is reversibly switchable, shows tens of conductive states, presents Hebbian learning demonstrated by spiking time dependent plasticity (STDP), and behaves with both short- (STM) an…

Semiconductors orgànicsFOS: Computer and information sciencesCondensed Matter - Materials ScienceComputer Science - Emerging TechnologiesMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesPhysics - Applied PhysicsApplied Physics (physics.app-ph)Condensed Matter - Soft Condensed MatterElectronic Optical and Magnetic MaterialsElectroquímicaEmerging Technologies (cs.ET)Soft Condensed Matter (cond-mat.soft)MaterialsAdvanced Electronic Materials
researchProduct

Three-body correlations and conditional forces in suspensions of active hard disks

2017

Self-propelled Brownian particles show rich out-of-equilibrium physics, for instance, the motility-induced phase separation (MIPS). While decades of studying the structure of liquids have established a deep understanding of passive systems, not much is known about correlations in active suspensions. In this work we derive an approximate analytic theory for three-body correlations and forces in systems of active Brownian disks starting from the many-body Smoluchowski equation. We use our theory to predict the conditional forces that act on a tagged particle and their dependence on the propulsion speed of self-propelled disks. We identify preferred directions of these forces in relation to th…

PhysicsWork (thermodynamics)Collective behaviorSmoluchowski coagulation equationNon-equilibrium thermodynamicsFOS: Physical sciencesContext (language use)02 engineering and technologyFunction (mathematics)Condensed Matter - Soft Condensed Matter021001 nanoscience & nanotechnology01 natural sciencessymbols.namesakeRange (mathematics)0103 physical sciencessymbolsSoft Condensed Matter (cond-mat.soft)Statistical physics010306 general physics0210 nano-technologyBrownian motion
researchProduct

Replica-exchange molecular dynamics simulation for supercooled liquids

2000

We investigate to what extend the replica-exchange Monte Carlo method is able to equilibrate a simple liquid in its supercooled state. We find that this method does indeed allow to generate accurately the canonical distribution function even at low temperatures and that its efficiency is about 10-100 times higher than the usual canonical molecular dynamics simulation.

Canonical ensemblePhysicsMolecular dynamicsStatistical Mechanics (cond-mat.stat-mech)ReplicaMonte Carlo methodSoft Condensed Matter (cond-mat.soft)FOS: Physical sciencesFunction (mathematics)Statistical physicsCondensed Matter - Soft Condensed MatterSupercoolingCondensed Matter - Statistical MechanicsPhysical Review E
researchProduct

Glass transition of hard spheres in high dimensions

2009

We have investigated analytically and numerically the liquid-glass transition of hard spheres for dimensions $d\to \infty $ in the framework of mode-coupling theory. The numerical results for the critical collective and self nonergodicity parameters $f_{c}(k;d) $ and $f_{c}^{(s)}(k;d) $ exhibit non-Gaussian $k$ -dependence even up to $d=800$. $f_{c}^{(s)}(k;d) $ and $f_{c}(k;d) $ differ for $k\sim d^{1/2}$, but become identical on a scale $k\sim d$, which is proven analytically. The critical packing fraction $\phi_{c}(d) \sim d^{2}2^{-d}$ is above the corresponding Kauzmann packing fraction $\phi_{K}(d)$ derived by a small cage expansion. Its quadratic pre-exponential factor is different fr…

Condensed matter physicsStatistical Mechanics (cond-mat.stat-mech)FOS: Physical sciencesGeometryScale (descriptive set theory)Hard spheresCondensed Matter - Soft Condensed MatterAtomic packing factorQuadratic equationExponentSoft Condensed Matter (cond-mat.soft)Glass transitionCritical exponentCondensed Matter - Statistical MechanicsMathematics
researchProduct