6533b7cffe1ef96bd1257c7a

RESEARCH PRODUCT

Brownian dynamics simulations with hard-body interactions: Spherical particles

Ralf EichhornHans Behringer

subject

PhysicsNumerical analysisFOS: Physical sciencesGeneral Physics and AstronomyProteinsComputational Physics (physics.comp-ph)Condensed Matter - Soft Condensed MatterModels BiologicalDiffusionMotionProbability theoryModels ChemicalProtein Interaction MappingBrownian dynamicsSoft Condensed Matter (cond-mat.soft)Computer SimulationStatistical physicsColloidsPhysical and Theoretical ChemistryPhysics - Computational PhysicsBrownian motionAlgorithms

description

A novel approach to account for hard-body interactions in (overdamped) Brownian dynamics simulations is proposed for systems with non-vanishing force fields. The scheme exploits the analytically known transition probability for a Brownian particle on a one-dimensional half-line. The motion of a Brownian particle is decomposed into a component that is affected by hard-body interactions and into components that are unaffected. The hard-body interactions are incorporated by replacing the affected component of motion by the evolution on a half-line. It is discussed under which circumstances this approach is justified. In particular, the algorithm is developed and formulated for systems with space-fixed obstacles and for systems comprising spherical particles. The validity and justification of the algorithm is investigated numerically by looking at exemplary model systems of soft matter, namely at colloids in flow fields and at protein interactions. Furthermore, a thorough discussion of properties of other heuristic algorithms is carried out.

10.1063/1.4761827http://arxiv.org/abs/1211.1308