Search results for "continuity"

showing 10 items of 378 documents

Hypersurfaces of prescribed mean curvature over obstacles

1973

Let ~2 be a bounded domain in the euclidean space IR", n-> 2, with Lipschitz boundary ~ . We shall consider surfaces which are graphs of functions u defined on f2 having prescribed mean curvature H=H(x, u) with the side condition that they should be bounded from below by an obstacle ~b. The case H = 0 (minimal surfaces) has been discussed in detail by several authors, compare [6, 7, 12, 13, 17, 18, 20, 21, 24] of the references. Tomi [-31] has also investigated parametric surfaces with variable H. More general variational problems with obstructions have been discussed in [-9] and [-10]. During the session on "Variationsrechnung", held from June 18th to June 24th, 1972 in Oberwolfach, Mirand…

Pure mathematicsMean curvature flowMinimal surfaceMean curvatureEuclidean spaceGeneral MathematicsBounded functionBoundary (topology)Lipschitz continuityDomain (mathematical analysis)MathematicsMathematische Zeitschrift
researchProduct

Lipschitz classes and the Hardy-Littlewood property

1993

We study the geometry of plane domains and the uniform Holder continuity properties of analytic functions.

Pure mathematicsPlane (geometry)General Mathematics010102 general mathematicsGlobal analytic functionMathematical analysis020206 networking & telecommunications02 engineering and technology16. Peace & justiceLipschitz continuity01 natural sciencesQuasi-analytic function0202 electrical engineering electronic engineering information engineeringAnalytic capacityNon-analytic smooth function0101 mathematicsAlgebraic geometry and analytic geometryMathematicsAnalytic functionMonatshefte für Mathematik
researchProduct

Some remarks on nonsmooth critical point theory

2006

A general min-max principle established by Ghoussoub is extended to the case of functionals f which are the sum of a locally Lipschitz continuous term and of a convex, proper, lower semicontinuous function, when f satisfies a compactness condition weaker than the Palais-Smale one, i.e., the so-called Cerami condition. Moreover, an application to a class of elliptic variational-hemivariational inequalities in the resonant case is presented. © Springer Science+Business Media B.V. 2007.

Pure mathematicsProblem at risonanceControl and OptimizationApplied MathematicsMathematical analysisRegular polygonNonsmooth Cerami conditionManagement Science and Operations ResearchLipschitz continuityNonsmooth Cerami; Elliptic variational–hemivariational inequalities; Problem at risonanceNonsmooth CeramiCritical point (mathematics)Computer Science ApplicationsElliptic variational-hemivariational inequalitieCompact spaceElliptic variational–hemivariational inequalitiesCritical points for nonsmooth functionMathematics
researchProduct

Nowhere differentiable intrinsic Lipschitz graphs

2021

We construct intrinsic Lipschitz graphs in Carnot groups with the property that, at every point, there exist infinitely many different blow-up limits, none of which is a homogeneous subgroup. This provides counterexamples to a Rademacher theorem for intrinsic Lipschitz graphs.

Pure mathematicsProperty (philosophy)General MathematicsMathematics::Analysis of PDEs01 natural sciencesdifferentiaaligeometriasymbols.namesakeMathematics - Metric Geometry0103 physical sciencesClassical Analysis and ODEs (math.CA)FOS: MathematicsMathematics::Metric GeometryPoint (geometry)Differentiable function0101 mathematicsMathematics010102 general mathematicsryhmäteoriaMetric Geometry (math.MG)16. Peace & justiceLipschitz continuity53C17 58C20 22E25Mathematics - Classical Analysis and ODEsHomogeneoussymbols010307 mathematical physicsCarnot cycleCounterexample
researchProduct

Approximation properties of λ ‐Bernstein‐Kantorovich operators with shifted knots

2019

Pure mathematicsRate of convergenceGeneral MathematicsGeneral EngineeringModulus of continuityMathematicsMathematical Methods in the Applied Sciences
researchProduct

Some new results on integration for multifunction

2018

It has been proven in previous papers that each Henstock-Kurzweil-Pettis integrable multifunction with weakly compact values can be represented as a sum of one of its selections and a Pettis integrable multifunction. We prove here that if the initial multifunction is also Bochner measurable and has absolutely continuous variational measure of its integral, then it is a sum of a strongly measurable selection and of a variationally Henstock integrable multifunction that is also Birkhoff integrable.

Pure mathematicsSelection (relational algebra)Integrable systemApplied MathematicsGeneral Mathematics010102 general mathematicsMultifunction set-valued Pettis integral set-valued variationally Henstock and Birkhoff integrals selectionselectionAbsolute continuity01 natural sciencesMeasure (mathematics)Set-valued Pettis integralFunctional Analysis (math.FA)28B20 26E25 26A39 28B05 46G10 54C60 54C65Mathematics - Functional Analysisset-valued Pettis integral010101 applied mathematicsMultifunctionSettore MAT/05 - Analisi MatematicaHenstock and Birkhoff integralsFOS: Mathematicsset-valued variationally0101 mathematicsSet-valued variationally henstock and birkhoff integralMathematicsRicerche di Matematica
researchProduct

Cheeger-harmonic functions in metric measure spaces revisited

2014

Abstract Let ( X , d , μ ) be a complete metric measure space, with μ a locally doubling measure, that supports a local weak L 2 -Poincare inequality. By assuming a heat semigroup type curvature condition, we prove that Cheeger-harmonic functions are Lipschitz continuous on ( X , d , μ ) . Gradient estimates for Cheeger-harmonic functions and solutions to a class of non-linear Poisson type equations are presented.

Pure mathematicsSemigroupta111Poincaré inequalityCurvatureLipschitz continuitySpace (mathematics)Measure (mathematics)symbols.namesakeHarmonic functionMetric (mathematics)symbolsAnalysisMathematicsJournal of Functional Analysis
researchProduct

WEAKLY COMPACT HOMOMORPHISMS BETWEEN SMALL ALGEBRAS OF ANALYTIC FUNCTIONS

2001

The weak compactness of the composition operator CΦ(f) = f ○ Φ acting on the uniform algebra of analytic uniformly continuous functions on the unit ball of a Banach space with the approximation property is characterized in terms of Φ. The relationship between weak compactness and compactness of these composition operators and general homomorphisms is also discussed.

Pure mathematicsUniform continuityCompact spaceApproximation propertyComposition operatorComputer Science::Information RetrievalGeneral MathematicsUniform algebraBanach spaceNon-analytic smooth functionMathematicsAnalytic functionBulletin of the London Mathematical Society
researchProduct

Sobolev Spaces and Quasiconformal Mappings on Metric Spaces

2001

Heinonen and I have recently established a theory of quasiconformal mappings on Ahlfors regular Loewner spaces. These spaces are metric spaces that have sufficiently many rectifiable curves in a sense of good estimates on moduli of curve families. The Loewner condition can be conveniently described in terms of Poincare inequalities for pairs of functions and upper gradients. Here an upper gradient plays the role that the length of the gradient of a smooth function has in the Euclidean setting. For example, the Euclidean spaces and Heisenberg groups and the more general Carnot groups admit the type of a Poincare inequality we need. We describe the basics and discuss the associated Sobolev sp…

Pure mathematicsUniform continuityMathematics::Complex VariablesFréchet spaceTopological tensor productInjective metric spaceMathematics::Metric GeometryInterpolation spaceBirnbaum–Orlicz spaceTopologyMathematicsSobolev inequalityConvex metric space
researchProduct

On almost Dugundji spaces and dyadic spaces

1994

Pure mathematicsUniform continuityMetric spaceRelatively compact subspaceFréchet spaceGeneral MathematicsInjective metric spaceHausdorff spaceInterpolation spaceConvex metric spaceMathematicsArchiv der Mathematik
researchProduct