6533b82cfe1ef96bd1290113
RESEARCH PRODUCT
Some remarks on nonsmooth critical point theory
Giovanni Molica BisciRoberto Livreasubject
Pure mathematicsProblem at risonanceControl and OptimizationApplied MathematicsMathematical analysisRegular polygonNonsmooth Cerami conditionManagement Science and Operations ResearchLipschitz continuityNonsmooth Cerami; Elliptic variational–hemivariational inequalities; Problem at risonanceNonsmooth CeramiCritical point (mathematics)Computer Science ApplicationsElliptic variational-hemivariational inequalitieCompact spaceElliptic variational–hemivariational inequalitiesCritical points for nonsmooth functionMathematicsdescription
A general min-max principle established by Ghoussoub is extended to the case of functionals f which are the sum of a locally Lipschitz continuous term and of a convex, proper, lower semicontinuous function, when f satisfies a compactness condition weaker than the Palais-Smale one, i.e., the so-called Cerami condition. Moreover, an application to a class of elliptic variational-hemivariational inequalities in the resonant case is presented. © Springer Science+Business Media B.V. 2007.
year | journal | country | edition | language |
---|---|---|---|---|
2006-08-05 |