0000000000707115
AUTHOR
Giovanni Molica Bisci
Some remarks on nonsmooth critical point theory
A general min-max principle established by Ghoussoub is extended to the case of functionals f which are the sum of a locally Lipschitz continuous term and of a convex, proper, lower semicontinuous function, when f satisfies a compactness condition weaker than the Palais-Smale one, i.e., the so-called Cerami condition. Moreover, an application to a class of elliptic variational-hemivariational inequalities in the resonant case is presented. © Springer Science+Business Media B.V. 2007.
An Existence Result for Fractional Kirchhoff-Type Equations
The aim of this paper is to study a class of nonlocal fractional Laplacian equations of Kirchhoff-type. More precisely, by using an appropriate analytical context on fractional Sobolev spaces, we establish the existence of one non-trivial weak solution for nonlocal fractional problems exploiting suitable variational methods.