0000000000707115

AUTHOR

Giovanni Molica Bisci

showing 2 related works from this author

Some remarks on nonsmooth critical point theory

2006

A general min-max principle established by Ghoussoub is extended to the case of functionals f which are the sum of a locally Lipschitz continuous term and of a convex, proper, lower semicontinuous function, when f satisfies a compactness condition weaker than the Palais-Smale one, i.e., the so-called Cerami condition. Moreover, an application to a class of elliptic variational-hemivariational inequalities in the resonant case is presented. © Springer Science+Business Media B.V. 2007.

Pure mathematicsProblem at risonanceControl and OptimizationApplied MathematicsMathematical analysisRegular polygonNonsmooth Cerami conditionManagement Science and Operations ResearchLipschitz continuityNonsmooth Cerami; Elliptic variational–hemivariational inequalities; Problem at risonanceNonsmooth CeramiCritical point (mathematics)Computer Science ApplicationsElliptic variational-hemivariational inequalitieCompact spaceElliptic variational–hemivariational inequalitiesCritical points for nonsmooth functionMathematics
researchProduct

An Existence Result for Fractional Kirchhoff-Type Equations

2016

The aim of this paper is to study a class of nonlocal fractional Laplacian equations of Kirchhoff-type. More precisely, by using an appropriate analytical context on fractional Sobolev spaces, we establish the existence of one non-trivial weak solution for nonlocal fractional problems exploiting suitable variational methods.

Kirchhoff typeApplied MathematicsFractional equations010102 general mathematicsMathematical analysisvariational methodsVariational methodAnalysiCritical point result01 natural sciencesFractional equationsFractional equationFractional calculus010101 applied mathematicscritical point resultsSimultaneous equations0101 mathematicsFractional equations variational methods critical point resultsAnalysisMathematicsZeitschrift für Analysis und ihre Anwendungen
researchProduct